cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385631 Products of five consecutive integers whose prime divisors are consecutive primes starting at 2.

Original entry on oeis.org

120, 720, 2520, 6720, 15120, 30240, 55440, 240240, 360360
Offset: 1

Views

Author

Ken Clements, Jul 05 2025

Keywords

Examples

			a(1) = 120 = 1*2*3*4*5 = 2^3 * 3^1 * 5^1.
a(2) = 720 = 2*3*4*5*6 = 2^4 * 3^2 * 5^1.
a(3) = 2520 = 3*4*5*6*7 = 2^3 * 3^2 * 5^1 * 7^1.
a(4) = 6720 = 4*5*6*7*8 = 2^6 * 3^1 * 5^1 * 7^1.
a(5) = 15120 = 5*6*7*8*9 = 2^4 * 3^3 * 5^1 * 7^1.
a(6) = 30240 = 6*7*8*9*10 = 2^5 * 3^3 * 5^1 * 7^1.
a(7) = 55440 = 7*8*9*10*11 = 2^4 * 3^2 * 5^1 * 7^1 * 11^1.
a(8) = 240240 = 10*11*12*13*14 = 2^4 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1.
a(9) = 360360 = 11*12*13*14*15 = 2^3 * 3^2 * 5^1 * 7^1 * 11^1 * 13^1.
		

Crossrefs

Intersection of A052787 and A055932.

Programs

  • Mathematica
    Select[(#*(# + 1)*(# + 2)*(# + 3)*(# + 4)) & /@ Range[12], PrimePi[(f = FactorInteger[#1])[[-1, 1]]] == Length[f] &] (* Amiram Eldar, Jul 05 2025 *)
  • Python
    from sympy import prime, primefactors
    def is_pi_complete(n): # Check for complete set of
        factors = primefactors(n) # prime factors
        return factors[-1] == prime(len(factors))
    def aupto(limit):
        result = []
        for i in range(1, limit+1):
            n = i * (i+1) * (i+2) * (i+3) * (i+4)
            if is_pi_complete(n):
                result.append(n)
        return result
    print(aupto(1000))