A385643 Galileo sequence with ratio k = 5: a(1) = 1, a(2) = k, a(2*n-1) = floor(((k + 1)*a(n) -1)/2), and a(2*n) = floor((k + 1)*a(n)/2) + 1 for n > 2.
1, 5, 14, 16, 41, 43, 47, 49, 122, 124, 128, 130, 140, 142, 146, 148, 365, 367, 371, 373, 383, 385, 389, 391, 419, 421, 425, 427, 437, 439, 443, 445, 1094, 1096, 1100, 1102, 1112, 1114, 1118, 1120, 1148, 1150, 1154, 1156, 1166, 1168, 1172, 1174, 1256, 1258, 1262
Offset: 1
Examples
1/5 = (1 + 5)/(14 + 16) = (1 + 5 + 14)/(16 + 41 + 43) = ...
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 23, 35.
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
k=5; a[1]=1; a[2]=k; a[n_]:=a[n]=If[OddQ[n], Floor[((k+1)*a[(n+1)/2]-1)/2], Floor[(k+1)*a[n/2]/2]+1]; Array[a, 51]
Comments