cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385648 G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x))^2 ).

Original entry on oeis.org

1, 4, 64, 1872, 91328, 7563648, 1115422976, 306988895488, 162926170881024, 169827391985854464, 350891899856754294784, 1443597302250006622052352, 11851990053153536620868173824, 194396568906445310993071164686336, 6373487768490075927307409156798611456
Offset: 0

Views

Author

Seiichi Manyama, Jul 06 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = Sum_{i, j, k>=0 and i+j+k=n-1} (2^j+1) * (2^k+1) * a(i) * a(j) * a(k).

A385651 E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(2*x))^3 ).

Original entry on oeis.org

1, 8, 640, 150272, 81879040, 97446821888, 252536538529792, 1441194498488532992, 18238881125752291459072, 511646632486244583515095040, 31662959021226253504069431721984, 4295217009165735294411016058313900032, 1268984197722535033624735101886101792489472
Offset: 0

Views

Author

Seiichi Manyama, Jul 06 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{i, j, k, l>=0 and i+j+k+l=n-1} (n-i) * (2^j+1) * (2^k+1) * (2^l+1) * a(i) * a(j) * a(k) * a(l)/(i! * j! * k! * l!).
Showing 1-2 of 2 results.