cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385649 G.f. A(x) satisfies A(x) = 1/( 1 - x*(A(x) + A(2*x))^3 ).

Original entry on oeis.org

1, 8, 352, 29696, 4263424, 1049470976, 462206058496, 380751228633088, 605491779706159104, 1892234112450731442176, 11725274627114715154743296, 144692808471111027067403108352, 3563512028948515548768609167736832, 175339259291213196115801459160952864768
Offset: 0

Views

Author

Seiichi Manyama, Jul 06 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = Sum_{i, j, k, l>=0 and i+j+k+l=n-1} (2^j+1) * (2^k+1) * (2^l+1) * a(i) * a(j) * a(k) * a(l).

A385650 E.g.f. A(x) satisfies A(x) = exp( x*(A(x) + A(2*x))^2 ).

Original entry on oeis.org

1, 4, 112, 8800, 1586944, 624664064, 536747751424, 1018102925488128, 4288756843049058304, 40076190507961751044096, 826422665125748814526283776, 37363126329930414708850363990016, 3679235193626553722088195031035805696, 784317990902751658071943156321585144528896
Offset: 0

Views

Author

Seiichi Manyama, Jul 06 2025

Keywords

Crossrefs

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{i, j, k>=0 and i+j+k=n-1} (n-i) * (2^j+1) * (2^k+1) * a(i) * a(j) * a(k)/(i! * j! * k!).
Showing 1-2 of 2 results.