cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385656 Numbers k such that the sum of the decimal digits of k^2 divides k^2.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 12, 15, 18, 20, 21, 24, 30, 36, 39, 42, 45, 48, 49, 51, 52, 54, 60, 63, 65, 66, 68, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 111, 112, 117, 120, 126, 132, 138, 140, 144, 148, 150, 156, 162, 168, 174, 180, 182, 190, 198, 200, 201, 204, 207
Offset: 1

Views

Author

Vighnesh Patil, Jul 06 2025

Keywords

Examples

			15 is a term 15^2 = 225; digit sum of 225 = 2 + 2 + 5 = 9; 225 mod 9 = 0, so 15 is included.
18 is a term 18^2 = 324; digit sum of 324 = 3 + 2 + 4 = 9; 324 mod 9 = 0, so 16 is included.
		

Crossrefs

Programs

  • Maple
    digitSum := n -> add(i,i=convert(n, base, 10)):
    isok := n -> modp(n^2, digitSum(n^2)) = 0:
    select(isok, [$1..400])[];
  • Mathematica
    DigitSum[n_] := Total[IntegerDigits[n]];
    Select[Range[400], Mod[#^2, DigitSum[#^2]] == 0 &]
  • PARI
    isok(k) = (k^2 % sumdigits(k^2)) == 0; \\ Michel Marcus, Jul 06 2025
  • Python
    def digit_sum(n): return sum(int(d) for d in str(n))
    def ok(n): return (n**2) % digit_sum(n**2) == 0
    print([n for n in range(1, 1000) if ok(n)])
    

Formula

a(n) = sqrt(A118547(n)). - Michel Marcus, Jul 07 2025