A385676 Least prime p <= 2*n^2 - n + 1 such that the polynomial Sum_{k=1..n} sigma(k) * x^(n-k) is irreducible modulo p, or 1 if such p does not exist, where sigma is given by A000203.
1, 2, 3, 2, 1, 5, 11, 29, 2, 47, 5, 31, 13, 379, 37, 251, 23, 29, 67, 97, 41, 131, 11, 173, 41, 139, 79, 103, 281, 19, 7, 53, 71, 281, 131, 19, 3, 43, 149, 23, 347, 47, 29, 107, 107, 47, 823, 47, 311, 547, 67, 419, 263, 379, 349, 23, 227, 349, 19, 113
Offset: 1
Keywords
Examples
a(14) = 379 since 379 = 2*14^2 - 14 + 1 is the least prime p such that Sum_{k=1..14} sigma(k) * x^(14-k) is irreducible modulo p.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..400
Programs
-
Mathematica
sigma[n_]:=sigma[n]=DivisorSigma[1,n]; P[n_, x_]:=P[n, x]=Sum[sigma[k]*x^(n-k), {k, 1, n}]; tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, 1, PrimePi[2n^2-n+1]}]; tab=Append[tab,1]; Label[aa]; Continue, {n, 1, 60}];Print[tab]
-
PARI
a(n) = forprime(p=2, 2*n^2 - n + 1, if (polisirreducible(Mod(sum(k=1, n, sigma(k)*x^(n-k)), p)), return(p))); 1; \\ Michel Marcus, Aug 04 2025
Comments