cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385658 Least prime p < 2n*(n+1) such that the polynomial Sum_{k=1..n} tau(k)*x^(n-k) is irreducible modulo p, or 1 if such p does not exist, where tau is Ramanujan's tau function given by A000594.

Original entry on oeis.org

1, 2, 5, 17, 59, 19, 43, 17, 19, 89, 47, 67, 257, 89, 173, 11, 103, 67, 103, 191, 29, 89, 101, 139, 19, 13, 19, 79, 79, 271, 223, 149, 131, 5, 37, 31, 593, 149, 353, 109, 293, 293, 17, 19, 97, 83, 59, 79, 883, 101, 71, 13, 199, 113, 1013, 29, 1279, 7, 181, 383, 269, 197, 17
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 03 2025

Keywords

Comments

Conjecture: a(n) > 1 for all n > 1. In other words, for each n = 2,3,... the polynomial x^(n-1) + tau(2)*x^(n-2) + ... + tau(n) is irreducible modulo some prime p < 2n*(n+1).

Examples

			a(5) = 59 since the prime 59 is smaller than 2*5*(5+1) = 60, and 59 is the least prime p such that the polynomial tau(1)*x^4 + tau(2)*x^3 + tau(3)*x^2 + tau(4)*x + tau(5) is irreducible modulo p.
		

Crossrefs

Programs

  • Mathematica
    Tau[n_]:=Tau[n]=RamanujanTau[n];
    P[n_,x_]:=P[n,x]=Sum[Tau[k]x^(n-k),{k,1,n}];
    tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, 1, PrimePi[2n(n+1)-1]}];tab=Append[tab,1]; Label[aa]; Continue, {n,1,63}];Print[tab]
  • PARI
    a(n) = forprime(p=2, 2*n*(n+1)-1, if (polisirreducible(Mod(sum(k=1, n, ramanujantau(k)*x^(n-k)), p)), return(p))); 1; \\ Michel Marcus, Aug 04 2025

A385676 Least prime p <= 2*n^2 - n + 1 such that the polynomial Sum_{k=1..n} sigma(k) * x^(n-k) is irreducible modulo p, or 1 if such p does not exist, where sigma is given by A000203.

Original entry on oeis.org

1, 2, 3, 2, 1, 5, 11, 29, 2, 47, 5, 31, 13, 379, 37, 251, 23, 29, 67, 97, 41, 131, 11, 173, 41, 139, 79, 103, 281, 19, 7, 53, 71, 281, 131, 19, 3, 43, 149, 23, 347, 47, 29, 107, 107, 47, 823, 47, 311, 547, 67, 419, 263, 379, 349, 23, 227, 349, 19, 113
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 04 2025

Keywords

Comments

Conjecture: a(n) > 1 except for n = 1, 5.
Note that Sum_{k=1..5} sigma(k) * x^(5-k) = x^4 + 3*x^3 + 4*x^2 + 7*x + 6 = (x + 2)*(x^3 + x^2 + 2*x + 3).
See A385678 for a similar conjecture involving Euler's totient function.

Examples

			a(14) = 379 since 379 = 2*14^2 - 14 + 1 is the least prime p such that Sum_{k=1..14} sigma(k) * x^(14-k) is irreducible modulo p.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_]:=sigma[n]=DivisorSigma[1,n];
    P[n_, x_]:=P[n, x]=Sum[sigma[k]*x^(n-k), {k, 1, n}];
    tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, 1, PrimePi[2n^2-n+1]}];
    tab=Append[tab,1]; Label[aa]; Continue, {n, 1, 60}];Print[tab]
  • PARI
    a(n) = forprime(p=2, 2*n^2 - n + 1, if (polisirreducible(Mod(sum(k=1, n, sigma(k)*x^(n-k)), p)), return(p))); 1; \\ Michel Marcus, Aug 04 2025

A386827 Least prime n < p < 2*n*(n-1) such that the polynomial Sum_{k=1..n} x^(n-k)/k is irreducible modulo p, or 1 if such a prime p does not exist.

Original entry on oeis.org

1, 3, 7, 13, 7, 11, 83, 11, 43, 103, 41, 29, 89, 67, 43, 23, 41, 67, 131, 269, 47, 151, 43, 149, 191, 127, 29, 113, 263, 173, 61, 463, 223, 67, 61, 127, 103, 97, 47, 271, 89, 59, 337, 281, 157, 541, 269, 277, 73, 337, 463, 379, 223, 1481, 827, 797, 397, 101, 337, 431
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 04 2025

Keywords

Comments

Conjecture: a(n) > 1 for all n > 1. In other words, for each n = 2,3,... there is a prime p with n < p < 2*n*(n-1) such that the polynomial Sum_{k=1..n} x^(n-k)/k is irreducible modulo p.

Examples

			a(7) = 83 since 83 = 2*7*(7-1) - 1 is the least prime p > 7 such that the polynomial x^6 + x^5/2 + x^4/3 + x^3/4 + x^2/5 + x/6 + 1/7 is irreducible modulo p.
		

Crossrefs

Programs

  • Mathematica
    P[n_, x_]:=P[n, x]=Sum[x^(n-k)/k, {k, 1, n}];
    tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, PrimePi[n]+1, PrimePi[2n(n-1)-1]}];
    tab=Append[tab,1]; Label[aa]; Continue, {n,1,60}];Print[tab]
  • PARI
    a(n) = forprime(p=n+1, 2*n*(n-1)-1, if (polisirreducible(Mod(sum(k=1, n, x^(n-k)/k), p)), return(p))); 1; \\ Michel Marcus, Aug 05 2025
Showing 1-3 of 3 results.