A385658 Least prime p < 2n*(n+1) such that the polynomial Sum_{k=1..n} tau(k)*x^(n-k) is irreducible modulo p, or 1 if such p does not exist, where tau is Ramanujan's tau function given by A000594.
1, 2, 5, 17, 59, 19, 43, 17, 19, 89, 47, 67, 257, 89, 173, 11, 103, 67, 103, 191, 29, 89, 101, 139, 19, 13, 19, 79, 79, 271, 223, 149, 131, 5, 37, 31, 593, 149, 353, 109, 293, 293, 17, 19, 97, 83, 59, 79, 883, 101, 71, 13, 199, 113, 1013, 29, 1279, 7, 181, 383, 269, 197, 17
Offset: 1
Keywords
Examples
a(5) = 59 since the prime 59 is smaller than 2*5*(5+1) = 60, and 59 is the least prime p such that the polynomial tau(1)*x^4 + tau(2)*x^3 + tau(3)*x^2 + tau(4)*x + tau(5) is irreducible modulo p.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
Tau[n_]:=Tau[n]=RamanujanTau[n]; P[n_,x_]:=P[n,x]=Sum[Tau[k]x^(n-k),{k,1,n}]; tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, 1, PrimePi[2n(n+1)-1]}];tab=Append[tab,1]; Label[aa]; Continue, {n,1,63}];Print[tab]
-
PARI
a(n) = forprime(p=2, 2*n*(n+1)-1, if (polisirreducible(Mod(sum(k=1, n, ramanujantau(k)*x^(n-k)), p)), return(p))); 1; \\ Michel Marcus, Aug 04 2025
Comments