A385666 Triangle read by rows: T(n,k) is the number of 2n-bead balanced binary necklaces with period length 2n/k.
1, 1, 1, 3, 0, 1, 8, 1, 0, 1, 25, 0, 0, 0, 1, 75, 3, 1, 0, 0, 1, 245, 0, 0, 0, 0, 0, 1, 800, 8, 0, 1, 0, 0, 0, 1, 2700, 0, 3, 0, 0, 0, 0, 0, 1, 9225, 25, 0, 0, 1, 0, 0, 0, 0, 1, 32065, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 112632, 75, 8, 3, 0, 1, 0, 0, 0, 0, 0, 1, 400023
Offset: 1
Examples
Triangle begins: k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A003239(n) n 1 1 . . . . . . . . . . . . . . . 1 2 1 1 . . . . . . . . . . . . . . 2 3 3 . 1 . . . . . . . . . . . . . 4 4 8 1 . 1 . . . . . . . . . . . . 10 5 25 . . . 1 . . . . . . . . . . . 26 6 75 3 1 . . 1 . . . . . . . . . . 80 7 245 . . . . . 1 . . . . . . . . . 246 8 800 8 . 1 . . . 1 . . . . . . . . 810 9 2700 . 3 . . . . . 1 . . . . . . . 2704 10 9225 25 . . 1 . . . . 1 . . . . . . 9252 11 32065 . . . . . . . . . 1 . . . . . 32066 12 112632 75 8 3 . 1 . . . . . 1 . . . . 112720 13 400023 . . . . . . . . . . . 1 . . . 400024 14 1432613 245 . . . . 1 . . . . . . 1 . . 1432860 15 5170575 . 25 . 3 . . . . . . . . . 1 . 5170604 16 18783360 800 . 8 . . . 1 . . . . . . . 1 18784170 Examples for n=4 with necklaces of length 8: T(4, 1) = 8 necklaces have k=1 rotation, i.e. rotating 0 places: 00001111, 00010111, 00011011, 00011101, 00100111, 00101011, 00101101, 00110101 T(4, 2) = 1 necklace has k=2 rotations: 00110011 can be rotated onto itself by rotating 0 or 4 places. T(4, 4) = 1 necklace has k=4 rotations: 01010101 can be rotated onto itself by rotating 0, 2, 4 or 6 places.
Links
- Tilman Piesk, Rows 1..32, flattened
- Tilman Piesk, Triangle T(n,k)*2*n/k with row sums 2n choose n
- Tilman Piesk, List of imprimitive necklaces for n=1...15
- Tilman Piesk, List of primitive necklaces for n=1...8
Formula
T(n,k) = A022553(n/k) iff n divisible by k, otherwise 0.
Comments