cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385666 Triangle read by rows: T(n,k) is the number of 2n-bead balanced binary necklaces with period length 2n/k.

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 8, 1, 0, 1, 25, 0, 0, 0, 1, 75, 3, 1, 0, 0, 1, 245, 0, 0, 0, 0, 0, 1, 800, 8, 0, 1, 0, 0, 0, 1, 2700, 0, 3, 0, 0, 0, 0, 0, 1, 9225, 25, 0, 0, 1, 0, 0, 0, 0, 1, 32065, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 112632, 75, 8, 3, 0, 1, 0, 0, 0, 0, 0, 1, 400023
Offset: 1

Views

Author

Tilman Piesk, Jul 16 2025

Keywords

Comments

There are A003239(n) balanced binary necklaces of length 2n. (Central numbers of A047996.)
T(n,k) is the number of those that can be rotated into themselves in k different ways (at least 1 for the trivial rotation).
A022553(n) necklaces (corresponding to Lyndon words) have only the trivial rotation.
All columns have the same positive entries, each preceded by k-1 zeros.
Compare triangle A385665, which counts only self-complementary balanced binary necklaces.

Examples

			Triangle begins:
         k     1   2  3  4  5  6  7  8  9 10 11 12 13 14 15 16    A003239(n)
  n
  1            1   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .            1
  2            1   1  .  .  .  .  .  .  .  .  .  .  .  .  .  .            2
  3            3   .  1  .  .  .  .  .  .  .  .  .  .  .  .  .            4
  4            8   1  .  1  .  .  .  .  .  .  .  .  .  .  .  .           10
  5           25   .  .  .  1  .  .  .  .  .  .  .  .  .  .  .           26
  6           75   3  1  .  .  1  .  .  .  .  .  .  .  .  .  .           80
  7          245   .  .  .  .  .  1  .  .  .  .  .  .  .  .  .          246
  8          800   8  .  1  .  .  .  1  .  .  .  .  .  .  .  .          810
  9         2700   .  3  .  .  .  .  .  1  .  .  .  .  .  .  .         2704
 10         9225  25  .  .  1  .  .  .  .  1  .  .  .  .  .  .         9252
 11        32065   .  .  .  .  .  .  .  .  .  1  .  .  .  .  .        32066
 12       112632  75  8  3  .  1  .  .  .  .  .  1  .  .  .  .       112720
 13       400023   .  .  .  .  .  .  .  .  .  .  .  1  .  .  .       400024
 14      1432613 245  .  .  .  .  1  .  .  .  .  .  .  1  .  .      1432860
 15      5170575   . 25  .  3  .  .  .  .  .  .  .  .  .  1  .      5170604
 16     18783360 800  .  8  .  .  .  1  .  .  .  .  .  .  .  1     18784170
Examples for n=4 with necklaces of length 8:
T(4, 1) = 8 necklaces have k=1 rotation, i.e. rotating 0 places:
 00001111, 00010111, 00011011, 00011101, 00100111, 00101011, 00101101, 00110101
T(4, 2) = 1 necklace has k=2 rotations:
 00110011 can be rotated onto itself by rotating 0 or 4 places.
T(4, 4) = 1 necklace has k=4 rotations:
 01010101 can be rotated onto itself by rotating 0, 2, 4 or 6 places.
		

Crossrefs

Formula

T(n,k) = A022553(n/k) iff n divisible by k, otherwise 0.