cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385514 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 7, 64, 643, 6766, 73162, 805414, 8979523, 101060326, 1145704162, 13064219224, 149674343518, 1721537039236, 19866626222632, 229912254620434, 2667252458378083, 31009548579437446, 361198085246048602, 4214267651960927824, 49243413868632029338, 576179701092650156356
Offset: 0

Views

Author

Seiichi Manyama, Aug 04 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(2*n+1,k) * Binomial(2*n-k,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 05 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[2*n+1,k]*Binomial[2*n-k,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 05 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n+1, k)*binomial(2*n-k, n-k));
    

Formula

a(n) = [x^n] (1+x)^(2*n+1)/(1-2*x)^(n+1).
a(n) = [x^n] 1/((1-x) * (1-3*x)^(n+1)).
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(2*n+1,k).
a(n) = Sum_{k=0..n} 3^k * binomial(n+k,k).
a(n) ~ 2^(2*n+1) * 3^(n+1) / (5*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 06 2025

A386869 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(3*n+2,k) * binomial(3*n-k,n-k).

Original entry on oeis.org

1, 11, 168, 2839, 50333, 917604, 17036260, 320383295, 6082829067, 116342007859, 2238247173440, 43266114873636, 839661737871388, 16349646755219432, 319263686177979564, 6249714381417109903, 122603983720769666087, 2409746305286188995681
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(3*n+2, k)*binomial(3*n-k, n-k));

Formula

a(n) = [x^n] (1+x)^(3*n+2)/(1-2*x)^(2*n+1).
a(n) = [x^n] 1/((1-x)^2 * (1-3*x)^(2*n+1)).
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * (n-k+1) * binomial(3*n+2,k).
a(n) = Sum_{k=0..n} 3^k * (n-k+1) * binomial(2*n+k,k).
D-finite with recurrence 544*n*(2*n-1)*a(n) +8*(618*n^2-9184*n+8025)*a(n-1) +2*(-276538*n^2+1112059*n-1061145)*a(n-2) +15327*(3*n-4)*(3*n-5)*a(n-3)=0. - R. J. Mathar, Aug 19 2025
Showing 1-2 of 2 results.