A385678 Least prime p <= n^2 - 2*n + 4 such that the polynomial Sum_{k=1..n} phi(k)*x^(n-k) is irreducible modulo p, or 1 if such p does not exist, where phi is Euler's totient function given by A000010.
1, 2, 3, 1, 1, 7, 31, 13, 67, 7, 67, 13, 53, 7, 11, 19, 101, 239, 37, 23, 13, 103, 263, 89, 79, 29, 47, 23, 167, 317, 139, 73, 283, 7, 223, 71, 83, 29, 1117, 503, 83, 167, 811, 349, 17, 3, 263, 37, 157, 317, 11, 7, 43, 283, 17, 79, 193, 293, 257, 233
Offset: 1
Keywords
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..400
Programs
-
Mathematica
P[n_, x_]:=P[n, x]=Sum[EulerPhi[k]*x^(n-k), {k, 1, n}]; tab={};Do[Do[If[IrreduciblePolynomialQ[P[n, x], Modulus->Prime[k]]==True, tab=Append[tab,Prime[k]]; Goto[aa]], {k, 1, PrimePi[n^2-2n+4]}]; tab=Append[tab,1]; Label[aa]; Continue, {n, 1, 60}];Print[tab]
-
PARI
a(n) = forprime(p=2, n^2 - 2*n + 4, if (polisirreducible(Mod(sum(k=1, n, eulerphi(k)*x^(n-k)), p)), return(p))); 1; \\ Michel Marcus, Aug 04 2025
Formula
a(9) = 67 since 67 = 9^2 - 2*9 + 4 is the least prime p such that the polynomial Sum_{k=1..9}phi(k)*x^(9-k) is irreducible modulo p.
Comments