cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385690 E.g.f. A(x) satisfies A(x) = exp( x*A(x)*(A(x) + A(-x))/2 ).

Original entry on oeis.org

1, 1, 3, 25, 233, 3901, 62707, 1591493, 36539953, 1246111705, 37259797091, 1597211237425, 58891746904729, 3041999861503253, 133421178853319827, 8066042741507516701, 410229480337750129889, 28415048957473232282161, 1644249408980809155863491
Offset: 0

Views

Author

Seiichi Manyama, Jul 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 19;  A[] = 1; Do[A[x] = Exp[x*A[x]*(A[x] + A[-x])/2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Jul 07 2025 *)

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{i, j, k>=0 and i+j+2*k=n-1} (n-i) * a(i) * a(j) * a(2*k)/(i! * j! * (2*k)!).

A385688 E.g.f. A(x) satisfies A(x) = exp( x*((A(x) + A(-x))/2)^3 ).

Original entry on oeis.org

1, 1, 1, 10, 37, 736, 4861, 145552, 1392553, 55772416, 700205401, 35139710464, 546584937229, 32977620613120, 612127803448981, 43150087404292096, 930914421449463505, 75083676142358560768, 1846230024226716759601, 167681514857730519728128, 4629062510444281987051381
Offset: 0

Views

Author

Seiichi Manyama, Jul 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 21; A[] = 1; Do[A[x] = Exp[x*((A[x] + A[-x])/2)^3] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x]Range[0,terms-1]! (* Stefano Spezia, Jul 07 2025 *)

Formula

E.g.f. A(x) satisfies A(-x) = 1/A(x).
a(0) = 1; a(n) = (n-1)! * Sum_{i, j, k, l>=0 and i+2*j+2*k+2*l=n-1} (n-i) * a(i) * a(2*j) * a(2*k) * a(2*l)/(i! * (2*j)! * (2*k)! * (2*l)!).
Showing 1-2 of 2 results.