cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385720 Numbers k >= 1 such that k/A000005(k) + (k+1)/A000005(k+1) is an integer.

Original entry on oeis.org

1, 5, 6, 8, 10, 13, 22, 37, 45, 46, 58, 61, 62, 69, 73, 74, 77, 82, 89, 106, 114, 117, 126, 146, 149, 150, 154, 157, 166, 167, 178, 186, 193, 197, 198, 206, 221, 226, 233, 237, 258, 261, 262, 263, 266, 277, 278, 279, 280, 290, 293, 306, 309, 311, 312, 313
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 07 2025

Keywords

Comments

k/A000005(k) + (k+1)/A000005(k+1) = (3*k + 1)/4 for k >= 5 from A256072.
k/A000005(k) + (k+1)/A000005(k+1) = (3*k + 2)/4 for k >= 6 from A077065.
k/A000005(k) + (k+1)/A000005(k+1) =< (3*k + 2)/4 for k >= 5.

Examples

			For k = 6: 6/A000005(6) + 7/A000005(7) = 6/4 + 7/2 = 5, thus k = 6 is a term.
		

Crossrefs

Programs

  • Mathematica
    Position[Plus @@@ Partition[Table[n/DivisorSigma[0, n], {n, 1, 320}], 2, 1], ?IntegerQ] // Flatten (* _Amiram Eldar, Jul 08 2025 *)
  • PARI
    isok(k) = denominator(k/numdiv(k) + (k+1)/numdiv(k+1)) == 1; \\ Michel Marcus, Jul 08 2025
    
  • Python
    from itertools import count, islice
    from sympy import divisor_count
    def A385720_gen(startvalue=1): # generator of terms >= startvalue
        m = max(startvalue,1)
        a, b = divisor_count(m), divisor_count(m+1)
        for k in count(m):
            if not (k*b+(k+1)*a)%(a*b):
                yield k
            a, b = b, divisor_count(k+2)
    A385720_list = list(islice(A385720_gen(),30)) # Chai Wah Wu, Jul 13 2025