cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386409 Number of nonnegative values s < n such that (-s)^s == -s (mod n).

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 2, 4, 3, 4, 3, 7, 5, 5, 6, 6, 4, 6, 4, 9, 8, 5, 2, 13, 4, 8, 3, 9, 4, 14, 3, 6, 7, 8, 12, 11, 3, 7, 10, 17, 5, 16, 6, 9, 10, 5, 2, 19, 7, 8, 10, 13, 3, 6, 11, 18, 11, 7, 3, 27, 5, 7, 14, 10, 16, 17, 5, 13, 7, 21, 4, 21, 5, 6, 14, 12, 12, 21, 5, 27, 6, 11, 3, 29, 16, 10, 9, 19, 4, 23
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 20 2025

Keywords

Crossrefs

Programs

Extensions

a(1) corrected by Andrew Howroyd, Aug 22 2025

A385731 Number of divisors d of n such that (-d) == (-d)^d == d^d (mod n).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 08 2025

Keywords

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | Modexp(d, d, n) eq n-d and Modexp(-d, d, n) eq n-d]: n in [1..100]];
    
  • Mathematica
    a[n_]:=Length[Select[Divisors[n],Mod[-#,n]==PowerMod[-#,#,n]==PowerMod[#,#,n]&]];Array[a,100] (* James C. McMahon, Jul 21 2025 *)
  • PARI
    a(n) = sumdiv(n, d, (-d == Mod(d, n)^d) && (-d == Mod(-d, n)^d)); \\ Michel Marcus, Jul 09 2025

A386436 Smallest k for which A385731(k) = n.

Original entry on oeis.org

1, 2, 6, 42, 1770, 47058, 547470, 8648458, 623254170
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{k=0},Until[Length[Select[Divisors[k], Mod[-#, k]==PowerMod[-#, #, k]==PowerMod[#, #, k]&]]==n,k++];k];Array[a,7] (* James C. McMahon, Aug 06 2025 *)

Extensions

a(9) from Michel Marcus, Jul 21 2025

A386872 Smallest k for which A385662(k) = n, or -1 if no such k exists.

Original entry on oeis.org

1, 2, 6, 12, 18, 24, 54, 48, 72, 96, 270, 120, 450, 384, 288, 240, 2310, 360, 1890, 480, 1152, 3150, 4050, 720, 2592, 6930, 1800, 1920, 17010, 1440
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 06 2025

Keywords

Crossrefs

Programs

  • PARI
    f(n) = sumdiv(n, d, Mod(d, n)^d == Mod(-d, n)^d); \\ A385662
    a(n) = my(k=1); while (f(k) != n, k++); k; \\ Michel Marcus, Aug 06 2025
Showing 1-4 of 4 results.