cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385759 G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x) - x^4*A'''(x))).

Original entry on oeis.org

1, 2, 5, 15, 141, 3932, 251717, 31216948, 6680698525, 2271470142438, 1153913665217481, 835435792656039975, 830424340158140342961, 1099482665756962845820704, 1891111018270919721409143729, 4137752010118540256190073466415, 11312615890237585633045672755792789
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 17; A[] = 0; Do[A[x] = 1/((1-x)*(1-x*A[x]-x^4*A'''[x])) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jul 09 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, (1+sum(k=1, 3, stirling(3, k, 1)*j^k))*v[j+1]*v[i-j])); v;

Formula

a(n) = 1 + Sum_{k=0..n-1} (1 + 2*k - 3*k^2 + k^3) * a(k) * a(n-1-k).