cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385766 G.f. A(x) satisfies A(x) = 1/((1 - x) * (1 - x*A(x)^2 - x^2*A(x)*A'(x))).

Original entry on oeis.org

1, 2, 9, 66, 629, 7071, 89609, 1248355, 18820831, 303879698, 5215803877, 94656100969, 1808853399445, 36282216181916, 761902799960049, 16714472406574829, 382369378451581045, 9107117241193913850, 225512045313741357841, 5798133159909683869788
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 0; Do[A[x] = 1/((1-x)*(1-x*A[x]^2-x^2*A[x]*A'[x])) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jul 09 2025 *)

Formula

a(n) = 1 + Sum_{i, j, k>=0 and i+j+k=n-1} (i+1) a(i) * a(j) * a(k).

A385801 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^3 - x^2*A(x)^2*A'(x)).

Original entry on oeis.org

1, 1, 5, 39, 385, 4438, 57375, 812720, 12428977, 203183595, 3525740946, 64607354042, 1245332551755, 25172891719156, 532300335665640, 11750901331656240, 270347716681495537, 6472208752084251545, 161016802667814325743, 4157582808082008519225
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 0; Do[A[x] = 1/(1-x*A[x]^3-x^2*A[x]^2*A'[x]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jul 09 2025 *)

Formula

a(0) = 1; a(n) = Sum_{i, j, k, l>=0 and i+j+k+l=n-1} (i+1) a(i) * a(j) * a(k) * a(l).
Showing 1-2 of 2 results.