cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385776 Primes having only {1, 2, 9} as digits.

Original entry on oeis.org

2, 11, 19, 29, 191, 199, 211, 229, 911, 919, 929, 991, 1129, 1229, 1291, 1999, 2111, 2129, 2221, 2999, 9199, 9221, 9929, 11119, 11299, 12119, 12211, 12911, 12919, 19121, 19211, 19219, 19919, 19991, 21121, 21191, 21211, 21221, 21911, 21929, 21991
Offset: 1

Views

Author

Jason Bard, Jul 09 2025

Keywords

Crossrefs

Supersequence of A020450, A020457, A020460.
Cf. A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(n=50, show=0, L=[1, 2, 9])={for(d=1, 1e9, my(t, u=vector(d, i, 10^(d-i))~); forvec(v=vector(d, i, [1+!(L[1]||(i>1&&i
    				
  • Python
    from gmpy2 import is_prime
    from itertools import count, islice, product
    def primes_with(digits):  # generator of primes having only set(digits) as digits
        S, E = "".join(sorted(set(digits) - {'0'})), "".join(sorted(set(digits) & set("1379")))
        yield from (p for p in [2, 3, 5, 7] if str(p) in digits)
        yield from (t for d in count(2) for s in S for m in product(digits, repeat=d-2) for e in E if is_prime(t:=int(s+"".join(m)+e)))
    print(list(islice(primes_with("129"), 41))) # Michael S. Branicky, Jul 11 2025