cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 262 results. Next

A385768 Primes having only {0, 4, 9} as digits.

Original entry on oeis.org

409, 449, 499, 4049, 4099, 4409, 4909, 4999, 9049, 9949, 40009, 40099, 40499, 40949, 44449, 44909, 49009, 49409, 49499, 49999, 90499, 94009, 94049, 94099, 94949, 94999, 99409, 400009, 400409, 400949, 404009, 404099, 404449, 409099, 409499, 409909, 409999
Offset: 1

Views

Author

Jason Bard, Jul 09 2025

Keywords

Examples

			4099 is a term because it is prime, and it only contains {0,4,9}.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 4, 9]];
    
  • Mathematica
    Select[FromDigits/@Tuples[{0,4,9},5],PrimeQ]
  • PARI
    primes_with(, 1, [0, 4, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("049"), 41))) # uses function/imports in A385776
    

A385800 Primes having only {6, 8, 9} as digits.

Original entry on oeis.org

89, 6689, 6869, 6899, 8669, 8689, 8699, 8969, 8999, 9689, 66889, 68669, 68699, 68899, 69899, 86689, 86869, 86969, 88969, 89669, 89689, 89899, 89989, 96989, 98669, 98689, 98869, 98899, 98999, 99689, 99989, 666889, 666989, 668699, 668869, 668989, 668999, 669689, 669869
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Subsequence of A030431, A106111.
Supersequence of A020472.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [6, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{6, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("689"), 41))) # uses function/imports in A385776
    

A214704 Primes that contain only the digits (2, 3, 7).

Original entry on oeis.org

2, 3, 7, 23, 37, 73, 223, 227, 233, 277, 337, 373, 727, 733, 773, 2237, 2273, 2333, 2377, 2777, 3323, 3373, 3727, 3733, 7237, 7333, 7723, 7727, 22273, 22277, 22727, 22777, 23227, 23327, 23333, 23773, 27277, 27337, 27733, 27737, 27773, 32233, 32237, 32323
Offset: 1

Views

Author

Vincenzo Librandi, Jul 28 2012

Keywords

Comments

The digits are prime numbers excluding 5.

Crossrefs

Subsequence of A019546.
Cf. A087363 (primes with only prime digits excluding 2).
Cf. A385776 (main sequence for primes containing three distinct digits).

Programs

  • Magma
    [p: p in PrimesUpTo(80000) | Set(Intseq(p)) subset [2,3,7]];
  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{2,3,7},n],PrimeQ],{n,6}]]

A261182 Primes having only {2, 7, 9} as digits.

Original entry on oeis.org

2, 7, 29, 79, 97, 227, 229, 277, 727, 797, 929, 977, 997, 2297, 2729, 2777, 2797, 2927, 2999, 7229, 7297, 7727, 7927, 9227, 9277, 9929, 22229, 22277, 22279, 22727, 22777, 27277, 27299, 27779, 27799, 27997, 29297, 29927, 72227, 72229, 72277, 72727, 72797
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020459, A020460 and A020471 are subsequences.

Crossrefs

Cf. similar sequences listed in A261181.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [2, 7, 9]];
    
  • Mathematica
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {2, 7, 9}] == {} &]
    Select[Flatten[Table[FromDigits/@Tuples[{2,7,9},n],{n,5}]],PrimeQ] (* Harvey P. Dale, Dec 17 2024 *)
  • Python
    from gmpy2 import is_prime
    from itertools import product
    A261182_list = [int(''.join(d)) for l in range(1,10) for d in product('279',repeat=l) if is_prime(int(''.join(d)))] # Chai Wah Wu, Aug 11 2015

A385779 Primes having only {1, 5, 6} as digits.

Original entry on oeis.org

5, 11, 61, 151, 661, 1151, 1511, 5651, 6151, 6551, 6661, 11161, 11551, 15161, 15511, 15551, 15661, 16111, 16561, 16651, 16661, 51151, 51511, 51551, 55511, 55661, 56611, 61151, 61511, 61561, 61651, 65111, 65551, 65651, 66161, 111611, 115151, 115561, 151561
Offset: 1

Views

Author

Jason Bard, Jul 13 2025

Keywords

Crossrefs

Supersequence of A020453, A020454.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 5, 6]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 5, 6}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 5, 6]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("156"), 41))) # uses function/imports in A385776
    

A107715 Primes having only {0,1,2,3} as digits.

Original entry on oeis.org

2, 3, 11, 13, 23, 31, 101, 103, 113, 131, 211, 223, 233, 311, 313, 331, 1013, 1021, 1031, 1033, 1103, 1123, 1201, 1213, 1223, 1231, 1301, 1303, 1321, 2003, 2011, 2111, 2113, 2131, 2203, 2213, 2221, 2311, 2333, 3001, 3011, 3023, 3121, 3203, 3221, 3301, 3313
Offset: 1

Views

Author

Rick L. Shepherd, May 22 2005

Keywords

Crossrefs

Subsequence of A036956.
Cf. A036953 (primes containing digits from set {0, 1, 2}).

Programs

  • Haskell
    a107715 n = a107715_list !! (n-1)
    a107715_list = filter ((== 1) . a010051) a007090_list
    -- Reinhard Zumkeller, Aug 11 2011
    
  • Mathematica
    Select[Prime[Range[500]],Max[IntegerDigits[#]]<4&] (* Harvey P. Dale, May 09 2012 *)
    Select[FromDigits/@Tuples[{0,1,2,3},4],PrimeQ] (* Harvey P. Dale, Mar 06 2016 *)
  • Python
    from gmpy2 import digits
    from sympy import isprime
    [int(digits(n,4)) for n in range(1000) if isprime(int(digits(n,4)))] # Chai Wah Wu, Jul 31 2014
    
  • Python
    print(list(islice(primes_with("0123"), 41))) # uses function/imports in A385776. Jason Bard, Jul 18 2025

A260224 Primes having only {1, 3, 5} as digits.

Original entry on oeis.org

3, 5, 11, 13, 31, 53, 113, 131, 151, 311, 313, 331, 353, 1151, 1153, 1511, 1531, 1553, 3313, 3331, 3511, 3533, 5113, 5153, 5333, 5351, 5531, 11113, 11131, 11311, 11351, 11353, 11551, 13151, 13313, 13331, 13513, 13553, 15131, 15313, 15331, 15511, 15551
Offset: 1

Views

Author

Vincenzo Librandi, Jul 21 2015

Keywords

Crossrefs

Subsequence of A030096. A004022, A020451, A020453, and A020462 are subsequences.
Cf. similar sequences listed in A260223.

Programs

  • Magma
    [p: p in PrimesUpTo(40000) | Set(Intseq(p)) subset [3, 5, 1]];
    
  • Mathematica
    Select[Prime[Range[3 10^3]], Complement[IntegerDigits[#], {3, 5, 1}]=={} &]
    Select[Flatten[Table[FromDigits/@Tuples[{1,3,5},n],{n,5}]],PrimeQ] (* Harvey P. Dale, Mar 03 2020 *)
  • Python
    from gmpy2 import is_prime, mpz
    from itertools import product
    A260224_list = [int(''.join(x)) for n in range(1,10) for x in product('135',repeat=n) if is_prime(mpz(''.join(x)))] # Chai Wah Wu, Jul 21 2015

A363023 Primes having only {1, 6, 9} as digits.

Original entry on oeis.org

11, 19, 61, 191, 199, 619, 661, 691, 911, 919, 991, 1619, 1669, 1699, 1999, 6199, 6619, 6661, 6691, 6911, 6961, 6991, 9161, 9199, 9619, 9661, 11119, 11161, 11699, 11969, 16111, 16619, 16661, 16691, 16699, 19661, 19699, 19919, 19961, 19991, 61169, 61961
Offset: 1

Views

Author

Harvey P. Dale, May 13 2023

Keywords

Crossrefs

Cf. A020454 (1 and 6), A020457 (1 and 9).
Cf. A385776.

Programs

  • Mathematica
    Table[Select[Flatten[10#+{1,9}&/@FromDigits/@Tuples[{1,6,9},n]],PrimeQ],{n,4}]//Flatten

A385770 Primes having only {0, 6, 7} as digits.

Original entry on oeis.org

7, 67, 607, 677, 6007, 6067, 6607, 7607, 60077, 60607, 66067, 67607, 67777, 70067, 70607, 70667, 76607, 76667, 76777, 606077, 606607, 607007, 607067, 607667, 660067, 660607, 666067, 666607, 666667, 666707, 670777, 676007, 677077, 677767, 700067
Offset: 1

Views

Author

Jason Bard, Jul 09 2025

Keywords

Examples

			6007 is a term because it is prime and has only {0,6,7} as digits.
		

Crossrefs

Subsequence of A030432.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 6, 7]];
    
  • Mathematica
    Select[FromDigits/@Tuples[{0,6,7},5],PrimeQ]
  • PARI
    primes_with(, 1, [0, 6, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("067"), 41))) # uses function/imports in A385776
    

A385773 Primes having only {1, 2, 5} as digits.

Original entry on oeis.org

2, 5, 11, 151, 211, 251, 521, 1151, 1511, 2111, 2221, 2251, 2521, 2551, 5521, 11251, 11551, 12211, 12251, 12511, 15121, 15511, 15551, 21121, 21211, 21221, 21521, 22111, 22511, 25111, 25121, 51151, 51511, 51521, 51551, 52121, 52511, 55511, 111121, 111211
Offset: 1

Views

Author

Jason Bard, Jul 09 2025

Keywords

Crossrefs

Supersequence of A024050, A020453.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 5]];
    
  • Mathematica
    Flatten[Table[ Select[FromDigits /@ Tuples[{1, 2, 5}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 5]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("125"), 41))) # uses function/imports in A385776
    
Showing 1-10 of 262 results. Next