cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A107666 Primes having only {4, 6, 9} as digits.

Original entry on oeis.org

449, 499, 4649, 4969, 4999, 6449, 6469, 6949, 9649, 9949, 44449, 44699, 46499, 46649, 49499, 49669, 49999, 64499, 64969, 66449, 66499, 66949, 69499, 94649, 94949, 94999, 96469, 99469, 444449, 444469, 444649, 446969, 449699, 464699, 464999, 466649, 469649, 469969
Offset: 1

Views

Author

Rick L. Shepherd, May 19 2005

Keywords

Comments

Intersection of A000040 and A107665. - K. D. Bajpai, Sep 08 2014

Examples

			From _K. D. Bajpai_, Sep 08 2014: (Start)
4649 is a term because it is a prime having only semiprime digits 4, 6 and 9.
6469 is a term because it is a prime having only semiprime digits 4, 6 and 9.
449 is the smallest prime comprising only semiprime digits 4, 6 or 9.
(End)
		

Crossrefs

Cf. A107665 (numbers with semiprime digits), A001358 (semiprimes), A051416 (primes whose digits are all composite), A020466 (primes with digits 4 and 9 only), A093402 (primes of form 44...9), A093945 (primes of form 499...).

Programs

  • Maple
    N:= 4:  Dgts:= {4, 6, 9}:  A:= NULL:
    for d from 1 to N do
    K:= combinat[cartprod]([Dgts minus {0}, Dgts $(d-1)]);
    while not K[finished] do L:= K[nextvalue]();  x:= add(L[i]*10^(d-i), i=1..d);
    if isprime(x) then A:= A, x fi od od: A;  # K. D. Bajpai, Sep 08 2014
  • Mathematica
    Select[Prime[Range[50000]], Intersection[IntegerDigits[#], {0, 1, 2, 3, 5, 7, 8}] == {} &] (* K. D. Bajpai, Sep 08 2014 *)

Extensions

a(35)-a(38) from K. D. Bajpai, Sep 08 2014

A199342 Primes having only {2, 3, 4} as digits.

Original entry on oeis.org

2, 3, 23, 43, 223, 233, 433, 443, 2243, 2333, 2423, 3323, 3343, 3433, 4243, 4423, 22343, 22433, 23333, 24223, 24443, 32233, 32323, 32423, 32443, 33223, 33343, 42223, 42323, 42433, 42443, 43223, 222323, 223243, 223423, 224233, 224423, 224443, 232333, 232433, 233323, 233423, 234323, 234343, 242243, 243233, 243343, 243433, 244243, 244333
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Comments

A020458 and A020461 are subsequences. - Vincenzo Librandi, Jul 28 2015

Crossrefs

Cf. similar sequences listed in A199340.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [3, 4, 2]]; // Vincenzo Librandi, Jul 28 2015
  • Mathematica
    Select[Prime[Range[10^5]], Complement[IntegerDigits[#], {3, 4, 2}]=={}&] (* Vincenzo Librandi, Jul 28 2015 *)
    Table[Select[FromDigits/@Tuples[{2,3,4},n],PrimeQ],{n,6}]//Flatten (* Harvey P. Dale, Nov 06 2019 *)
  • PARI
    a(n, list=0, L=[2, 3, 4], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u)||next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}
    

A199345 Primes having only {3, 4, 5} as digits.

Original entry on oeis.org

3, 5, 43, 53, 353, 433, 443, 3343, 3433, 3533, 5333, 5443, 33343, 33353, 33533, 34543, 35353, 35533, 35543, 43543, 44453, 44533, 44543, 45343, 45433, 45533, 45553, 53353, 53453, 54443, 55333, 55343, 333433, 333533, 334333, 335453, 343333, 343433, 343543, 344353, 344453, 344543, 345533, 353333, 353443, 353453, 354353, 354443
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(4*10^5) | Set(Intseq(p)) subset [3..5]]; // Bruno Berselli, Nov 07 2011
  • Mathematica
    Join[{3,5},Select[Flatten[Table[FromDigits/@(Join[#,{3}]&/@ Tuples[ {3,4,5},n]),{n,5}]],PrimeQ]] (* Harvey P. Dale, Aug 31 2015 *)
  • PARI
    a(n, list=0, L=[3, 4, 5], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}
    

A199346 Primes having only {3, 4, 6} as digits.

Original entry on oeis.org

3, 43, 433, 443, 463, 643, 3343, 3433, 3463, 3643, 4363, 4463, 4643, 4663, 6343, 33343, 36343, 36433, 36643, 43633, 44633, 46633, 46643, 46663, 63443, 63463, 64333, 64433, 64633, 64663, 66343, 66463, 66643, 333433, 334333, 334363, 334643, 336463, 336643, 343333, 343433, 344363, 346433, 363343, 363463, 364333, 364433, 364643
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Comments

All terms end in 3 and have a number of digits '4' that is not divisible by 3.
A020461 is a subsequence. - Vincenzo Librandi, Jul 29 2015

Crossrefs

Cf. similar sequences listed in A199340.

Programs

  • Magma
    [p: p in PrimesUpTo(4*10^5) | Set(Intseq(p)) subset [3, 4, 6]]; // Vincenzo Librandi, Jul 29 2015
  • Mathematica
    Select[Flatten[Table[FromDigits/@(Flatten[{#,3},1]&/@Tuples[{3,4,6},n]),{n,0,5}]],PrimeQ] (* Harvey P. Dale, Jan 01 2013 *)
    Select[Prime[Range[10^5]], Complement[IntegerDigits[#], {3, 4, 6}]=={}&] (* Vincenzo Librandi, Jul 28 2015 *)
  • PARI
    a(n, list=0, L=[3, 4, 6], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}
    

A199348 Primes having only {3, 4, 8} as digits.

Original entry on oeis.org

3, 43, 83, 383, 433, 443, 883, 3343, 3433, 3833, 4483, 8443, 33343, 34483, 34843, 34883, 38333, 38833, 44383, 44483, 44843, 48383, 48883, 83383, 83443, 83833, 83843, 84443, 88843, 88883, 333383, 333433, 334333, 334843, 338383, 343333, 343433, 344483, 344843, 348433, 348443, 348833, 348883, 383483, 383833, 384343, 384383, 388483
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Comments

All terms end in 3 and those > 3 never have the same number of 4's and 8's.

Crossrefs

Programs

  • Mathematica
    Table[Select[FromDigits/@Tuples[{3,4,8},n],PrimeQ],{n,6}]//Flatten (* Harvey P. Dale, Apr 09 2022 *)
  • PARI
    a(n, list=0, L=[3, 4, 8], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}

A214705 Primes that contain only the digits (2, 5, 7).

Original entry on oeis.org

2, 5, 7, 227, 257, 277, 557, 577, 727, 757, 2557, 2777, 5227, 5527, 5557, 7577, 7727, 7757, 22277, 22727, 22777, 25577, 27277, 27527, 52727, 52757, 57527, 57557, 57727, 72227, 72277, 72577, 72727, 75227, 75277, 75527, 75557, 75577, 77527, 77557, 222527, 222557
Offset: 1

Views

Author

Vincenzo Librandi, Jul 28 2012

Keywords

Comments

The digits are prime numbers.

Crossrefs

Subsequence of A019546.

Programs

  • Magma
    [p: p in PrimesUpTo(100000) | Set(Intseq(p)) subset [2,5,7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{2,5,7},n],PrimeQ],{n,6}]]
  • Python
    from sympy import primerange
    def ok(p): return set(str(p)) <= set("257")
    def aupto(limit): return [p for p in primerange(2, limit+1) if ok(p)]
    print(aupto(222557)) # Michael S. Branicky, Feb 05 2021

A386137 Primes having only {1, 6, 8, 9} as digits.

Original entry on oeis.org

11, 19, 61, 89, 181, 191, 199, 619, 661, 691, 811, 881, 911, 919, 991, 1181, 1619, 1669, 1699, 1811, 1861, 1889, 1999, 6199, 6619, 6661, 6689, 6691, 6869, 6899, 6911, 6961, 6991, 8111, 8161, 8191, 8669, 8681, 8689, 8699, 8819, 8861, 8969, 8999, 9161, 9181, 9199
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A363023, A385782, A385783, A385800.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 6, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 6, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1689"), 41))) # uses function/imports in A385776
    

A386167 Primes having only {2, 6, 8, 9} as digits.

Original entry on oeis.org

2, 29, 89, 229, 269, 829, 929, 2269, 2689, 2699, 2969, 2999, 6229, 6269, 6299, 6689, 6829, 6869, 6899, 8269, 8629, 8669, 8689, 8699, 8929, 8969, 8999, 9629, 9689, 9829, 9929, 22229, 22669, 22699, 26669, 26699, 28229, 28289, 28669, 29269, 29629, 29669, 29989, 62299
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A385788, A385790, A385800.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 6, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 6, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2689"), 41))) # uses function/imports in A385776
    

A386186 Primes having only {3, 6, 8, 9} as digits.

Original entry on oeis.org

3, 83, 89, 383, 389, 683, 839, 863, 883, 983, 3389, 3833, 3863, 3889, 3989, 6389, 6689, 6833, 6863, 6869, 6883, 6899, 6983, 8363, 8369, 8389, 8663, 8669, 8689, 8693, 8699, 8839, 8863, 8893, 8933, 8963, 8969, 8999, 9689, 9833, 9839, 9883, 33863, 33889, 33893, 36383
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A385791, A385792, A385800.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [3, 6, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{3, 6, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [3, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("3689"), 41))) # uses function/imports in A385776
    

A386198 Primes having only {5, 6, 8, 9} as digits.

Original entry on oeis.org

5, 59, 89, 569, 599, 659, 859, 5569, 5659, 5669, 5689, 5869, 6569, 6599, 6659, 6689, 6869, 6899, 6959, 8599, 8669, 8689, 8699, 8969, 8999, 9689, 9859, 55589, 55889, 56569, 56599, 56659, 56989, 56999, 58699, 58889, 59659, 59669, 59699, 59999, 65599, 65699, 65899
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A385797, A385798, A385800.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [5, 6, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{5, 6, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [5, 6, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("5689"), 41))) # uses function/imports in A385776
    
Showing 1-10 of 10 results.