cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A260827 Primes having only {0, 5, 7} as digits.

Original entry on oeis.org

5, 7, 557, 577, 757, 5077, 5507, 5557, 7057, 7507, 7577, 7757, 50077, 50707, 50777, 55057, 57077, 57557, 70507, 75557, 75577, 75707, 77557, 500057, 500777, 505777, 507077, 507557, 507757, 550007, 550577, 550757, 555077, 555557, 555707, 557057, 570077, 575077
Offset: 1

Views

Author

Vincenzo Librandi, Aug 01 2015

Keywords

Crossrefs

A020467 is a subsequence.
Cf. Primes that contain only the digits (k,5,7): this sequence (k=0), A260828 (k=1), A214705 (k=2), A087363 (k=3), A217039 (k=4), A260829 (k=6), A260830 (k=8), A260831 (k=9).
Cf. A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^6) | Set(Intseq(p)) subset [0,5,7]];
    
  • Mathematica
    Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {0, 5, 7}]=={} &]
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def aupton(terms):
      n, digits, alst = 0, 1, []
      while len(alst) < terms:
        mpstr = "".join(d*digits for d in "057")
        for mp in multiset_permutations(mpstr, digits):
          if mp[0] == "0": continue
          t = int("".join(mp))
          if isprime(t): alst.append(t)
          if len(alst) == terms: break
        else: digits += 1
      return alst
    print(aupton(38)) # Michael S. Branicky, May 07 2021

A386049 Primes having only {0, 2, 5, 7} as digits.

Original entry on oeis.org

2, 5, 7, 227, 257, 277, 557, 577, 727, 757, 2027, 2207, 2557, 2707, 2777, 5077, 5227, 5507, 5527, 5557, 7027, 7057, 7207, 7507, 7577, 7727, 7757, 20507, 20707, 22027, 22277, 22727, 22777, 25057, 25577, 27077, 27277, 27527, 50077, 50207, 50227, 50527, 50707, 50777
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Comments

Primes with decimal digits only in the set {0,2} mod 5.

Crossrefs

Supersequence of A214705, A260827, A261267.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 2, 5, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 2, 5, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 2, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0257"), 41))) # uses function/imports in A385776
    

A386096 Primes having only {1, 2, 5, 7} as digits.

Original entry on oeis.org

2, 5, 7, 11, 17, 71, 127, 151, 157, 211, 227, 251, 257, 271, 277, 521, 557, 571, 577, 727, 751, 757, 1117, 1151, 1171, 1217, 1277, 1511, 1571, 1721, 1777, 2111, 2221, 2251, 2521, 2551, 2557, 2711, 2777, 5171, 5227, 5521, 5527, 5557, 5711, 5717, 7121, 7127, 7151
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A214705, A260828, A260889, A385773.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 5, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 5, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1257"), 41))) # uses function/imports in A385776
    

A386153 Primes having only {2, 4, 5, 7} as digits.

Original entry on oeis.org

2, 5, 7, 47, 227, 257, 277, 457, 547, 557, 577, 727, 757, 2447, 2477, 2557, 2777, 4447, 4457, 4547, 5227, 5477, 5527, 5557, 7247, 7457, 7477, 7547, 7577, 7727, 7757, 22247, 22277, 22447, 22727, 22777, 24247, 24527, 24547, 25247, 25447, 25457, 25577, 25747, 27277
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A214705, A217039, A385784.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 4, 5, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 4, 5, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 4, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2457"), 41))) # uses function/imports in A385776
    

A386160 Primes having only {2, 5, 6, 7} as digits.

Original entry on oeis.org

2, 5, 7, 67, 227, 257, 277, 557, 577, 677, 727, 757, 2267, 2557, 2657, 2677, 2767, 2777, 5227, 5527, 5557, 5657, 6257, 6277, 6577, 7577, 7727, 7757, 22277, 22567, 22727, 22777, 25577, 25657, 25667, 26227, 26267, 26557, 26627, 26777, 27277, 27527, 27767, 52267
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A214705, A260829, A385787.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 5, 6, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 5, 6, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 5, 6, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2567"), 41))) # uses function/imports in A385776
    

A386162 Primes having only {2, 5, 7, 8} as digits.

Original entry on oeis.org

2, 5, 7, 227, 257, 277, 557, 577, 587, 727, 757, 787, 827, 857, 877, 887, 2287, 2557, 2777, 2857, 2887, 5227, 5527, 5557, 5827, 5857, 7577, 7727, 7757, 7877, 8287, 8527, 8887, 22277, 22727, 22777, 22787, 22877, 25577, 27277, 27527, 27827, 28277, 52727, 52757
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A214705, A260830, A385789.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 5, 7, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 5, 7, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 5, 7, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2578"), 41))) # uses function/imports in A385776
    

A386163 Primes having only {2, 5, 7, 9} as digits.

Original entry on oeis.org

2, 5, 7, 29, 59, 79, 97, 227, 229, 257, 277, 557, 577, 599, 727, 757, 797, 929, 977, 997, 2297, 2557, 2579, 2729, 2777, 2797, 2927, 2957, 2999, 5227, 5279, 5297, 5527, 5557, 5779, 5927, 7229, 7297, 7529, 7559, 7577, 7727, 7757, 7759, 7927, 9227, 9257, 9277, 9929
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A214705, A260831, A261182, A385786.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 5, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 5, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 5, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2579"), 41))) # uses function/imports in A385776
    
Showing 1-7 of 7 results.