cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A386051 Primes having only {0, 2, 6, 7} as digits.

Original entry on oeis.org

2, 7, 67, 227, 277, 607, 677, 727, 2027, 2207, 2267, 2677, 2707, 2767, 2777, 6007, 6067, 6277, 6607, 7027, 7207, 7607, 7727, 20627, 20707, 22027, 22067, 22277, 22727, 22777, 26227, 26267, 26627, 26777, 27067, 27077, 27277, 27767, 60077, 60607, 60727, 62207, 62627
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A261267, A385770, A385787.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 2, 6, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 2, 6, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 2, 6, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0267"), 41))) # uses function/imports in A385776
    

A386065 Primes having only {0, 3, 6, 7} as digits.

Original entry on oeis.org

3, 7, 37, 67, 73, 307, 337, 367, 373, 607, 673, 677, 733, 773, 3037, 3067, 3307, 3373, 3607, 3637, 3673, 3677, 3733, 3767, 6007, 6037, 6067, 6073, 6337, 6367, 6373, 6607, 6637, 6673, 6703, 6733, 6737, 6763, 7307, 7333, 7603, 7607, 7673, 7703, 30307, 30367, 30637
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A260378, A260380, A385770.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 6, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 6, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 6, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0367"), 41))) # uses function/imports in A385776
    

A386072 Primes having only {0, 4, 6, 7} as digits.

Original entry on oeis.org

7, 47, 67, 467, 607, 647, 677, 4007, 4447, 6007, 6047, 6067, 6607, 7477, 7607, 44647, 44777, 46447, 46477, 46747, 47407, 47777, 60077, 60607, 60647, 64007, 64067, 64667, 64747, 66047, 66067, 66467, 67447, 67477, 67607, 67777, 70067, 70607, 70667, 74047, 74077
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Subsequence of A030432.
Supersequence of A384449, A385770, A385794.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 4, 6, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 4, 6, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 4, 6, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0467"), 41))) # uses function/imports in A385776
    

A386077 Primes having only {0, 5, 6, 7} as digits.

Original entry on oeis.org

5, 7, 67, 557, 577, 607, 677, 757, 5077, 5507, 5557, 5657, 6007, 6067, 6577, 6607, 7057, 7507, 7577, 7607, 7757, 50077, 50707, 50767, 50777, 55057, 55667, 56767, 57077, 57557, 57667, 60077, 60607, 60757, 65557, 65657, 65677, 65707, 65777, 66067, 67057, 67567
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A260827, A260829, A385770.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 5, 6, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 5, 6, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 5, 6, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0567"), 41))) # uses function/imports in A385776
    

A386082 Primes having only {0, 6, 7, 8} as digits.

Original entry on oeis.org

7, 67, 607, 677, 787, 877, 887, 6007, 6067, 6607, 7607, 7687, 7867, 7877, 8087, 8677, 8707, 8807, 8867, 8887, 60077, 60607, 60887, 66067, 66877, 67607, 67777, 67807, 67867, 68087, 68687, 68767, 68777, 70067, 70607, 70667, 70687, 70867, 70877, 76607, 76667, 76777
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Subsequence of A030432.
Supersequence of A385770, A385771, A385799.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 6, 7, 8]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 6, 7, 8}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 6, 7, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0678"), 41))) # uses function/imports in A385776
    

A386083 Primes having only {0, 6, 7, 9} as digits.

Original entry on oeis.org

7, 67, 79, 97, 607, 677, 709, 769, 797, 907, 967, 977, 997, 6007, 6067, 6079, 6607, 6679, 6709, 6779, 6907, 6967, 6977, 6997, 7069, 7079, 7607, 7669, 7699, 7907, 9007, 9067, 9677, 9679, 9697, 9767, 9769, 9907, 9967, 60077, 60607, 60679, 60779, 66067, 66697, 66797
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A261181, A261184, A385770.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 6, 7, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 6, 7, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0679"), 41))) # uses function/imports in A385776
    

A386004 Primes whose digit set intersects the odd digits in at most one element and intersects the even digits in at most two elements.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 181, 211, 223, 227, 229, 233, 241, 263, 269, 277, 281, 283, 383, 401, 409, 421, 433, 443, 449, 461, 463, 467, 487, 499, 601, 607, 641, 643, 647, 661, 677, 683, 727, 787, 809, 811, 821, 823, 827, 829, 863
Offset: 1

Views

Author

Jean-Marc Rebert, Jul 14 2025

Keywords

Comments

From David A. Corneth, Jul 14 2025: (Start)
Terms can have at most three distinct digits.
Terms > 5 cannot have a digit 5. Proof: Terms > 5 are odd as they are prime. They cannot have a last digit 5. So if they have a digit 5 then they have at least two distinct odd digits contradicting the sequence definition of having at most one odd digit. (End)

Examples

			101 is a term because it is prime and its digit set is {0, 1} — containing at most one odd digit and no more than two distinct even digits.
1021 is a term because it is prime and its digit set is {0,1,2} — containing at most one odd digit and no more than two distinct even digits.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]],Length[Intersection[d=IntegerDigits[#],{1,3,5,7,9}]]<=1 && Length[Intersection[d,{0,2,4,6,8}]]<=2 &] (* Stefano Spezia, Jul 14 2025 *)
  • PARI
    is(n) = if(!isprime(n), return(0)); my(s=Set(digits(n)), odd=0); if(#s>3,return(0)); odd=sum(i=1, #s ,bitand(s[i], 1)); if(odd > 1, return(0)); if(#s-odd > 2, return(0)); 1 \\ David A. Corneth, Jul 14 2025
Showing 1-7 of 7 results.