A385819 Numbers k such that there are least five primitive Heron triangles having the same area and perimeter k.
2842, 3542, 5642, 5750, 6314, 7238, 7546, 9790, 15470, 15778, 17710, 20026, 21658, 21970, 22610, 26962
Offset: 1
Examples
3542 is a term because there exists 5 primitive Heron triangles: {{421,1518,1603}, {511,1375,1656}, {583,1288,1671},{759,1096,1687}, {851,1001,1690}} with same perimeter 3542 and same area 318780. 20026 is a term because there exists 6 primitive Heron triangles: {{2108,8493,9425}, {2173,8398,9455}, {2261,8277,9488}, {2418,8075,9533}, {4123,6205,9698}, {4588,5729,9709}} with same perimeter 20026 and same area 8410920.
Links
Programs
-
Mathematica
sol = Association[]; For[n = 2, n <= 6000, n += 2, For[z = Ceiling[n/3], z < Floor[n/2], z++, For[x = 1, x < Floor[n/3], x++, y = n - x - z; If[x + y > z > y > x && GCD[x, y, z] == 1, p = (x + y + z)/2; A = Sqrt[p (p - x) (p - y) (p - z)]; If[IntegerQ[A], d = ToString@n <> "->" <> ToString@A; t = {x, y, z}; If[KeyExistsQ[sol, d], AppendTo[sol[d], t], sol[d] = {t}]]]]]]; Select[sol, Length@# > 4 &]