cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385820 Number of equivalence classes of finitely-supported integer functions on Z^2 modulo moves that add + or -1 to every cell whose coordinates form an arithmetic progression of length n.

Original entry on oeis.org

1, 2, 27, 1024, 9765625, 272097792, 558545864083284007, 295147905179352825856, 1144561273430837494885949696427, 305175781250000000000000000000000000, 1890591424712781041871514584574319778449301246603238034051, 98746073676238604311280222171685832518740805156864
Offset: 1

Views

Author

Ethan Ji, Jul 09 2025

Keywords

Crossrefs

Cf. A076113.

Programs

  • Mathematica
    a[n_Integer?Positive] := Module[{pairs = FactorInteger[n]}, Times @@ (#1^(n^2*(#2 #1^(2 #2) - (#1^#2 (#1^#2 - 1))/(#1 - 1))/(2 #1^(2 #2))) & @@@ pairs)]
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, my(p=f[i,1], k=f[i,2]); f[i,2] = n^2*(k*p^(2*k) - p^k*(p^k-1)/(p-1))/(2*p^(2*k))); factorback(f); \\ Michel Marcus, Jul 10 2025

Formula

a(n) = Product_{p^k | n : prime p, k = p-adic order of n} p^(n^2*(k*p^(2k) - p^k(p^k - 1)/(p - 1)) / (2*p^(2k))).
a(p) = A076113(p), for prime p.