A385842 a(n) = 1 + Sum_{k=0..n-1} k^4 * a(k) * a(n-1-k).
1, 1, 2, 34, 2789, 716837, 448746495, 582025808335, 1398026940957747, 5727717572863611987, 37585285548218779674700, 375890452313654055440508988, 5503788078310849677217561978523, 114132054134076966886682122559148347, 3259839741208602005078393364829175139526
Offset: 0
Keywords
Programs
-
PARI
a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j^4*v[j+1]*v[i-j])); v;
Formula
G.f. A(x) satisfies A(x) = 1/( (1 - x) * ( 1 - x*Sum_{k=1..4} Stirling2(4,k) * x^k * (d^k/dx^k A(x)) ) ).