cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385868 Number of ways to tile a hexagonal strip made up of n equilateral triangles, using triangles, diamonds, and trapezoids.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 39, 66, 110, 200, 604, 1032, 1741, 3149, 9476, 16202, 27337, 49461, 148841, 254466, 429308, 776774, 2337580, 3996430, 6742361, 12199339, 36711974, 62764458, 105889743, 191592331, 576566591, 985724436, 1663012914, 3008983882, 9055057632, 15480937786
Offset: 0

Views

Author

Greg Dresden and Sean Choi, Jul 10 2025

Keywords

Comments

Here is the hexagonal strip:
/\ /\ /\ /\ / \ /
/\/\/\/\/ ... \/
\ /\ /\ /\ /\ /\
\/\/\/\/\ /\
The three types of tiles are triangles, diamonds, and trapezoids (each of which can be rotated). Here are the three types of tiles:
\ / \ \ / \
\/ and \_\ and /____\.
Compare to A356622 and A356623, which are on a similar board but only use triangles and diamonds.

Examples

			Here is one of the a(13) = 3149 possible tilings for this strip of 13 triangular cells:
   ____________
  /   /\   \   \
 /__ /__\   \ __\
 \      /\  /\
  \____/__\/__\.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 2; a[3] = 4; a[4] = 7; a[5] = 13; a[6] = 39; a[7] = 66;
    a[n_] := a[n] = Switch[Mod[n, 4],
        0, a[n-1] + a[n-3] + 2 a[n-4] + 3 a[n-5] + 2 a[n-6] + a[n-7],
        1, a[n-1] + a[n-2] + a[n-4] + a[n-5] + a[n-6],
        2, a[n-1] + a[n-2] + 3 a[n-3] + a[n-4] + 3 a[n-5] + 2 a[n-6] + a[n-7],
        3, a[n-1] + a[n-2] + a[n-3] + a[n-4] + a[n-5] + a[n-6]];
    Table[a[n], {n, 0, 40}]

Formula

a(n) = 15*a(n-4) + 9*a(n-8) + 32*a(n-12) + 9*a(n-16) + 1*a(n-20) - 1*a(n-24).
a(4*n+2) = t(2*n+1)^2 + t(2*n)^2 + 2*t(2*n)*t(2*n-1) + a(4*n) + 2*a(4*n-1) + Sum_{i=1..n-1} a(4*i)*(t(2*(n-i))^2 + 2*t(2*(n-i))*t(2*(n-i)-1)) + Sum_{i=1..n-1} a(4*i-1)*2*t(2*(n-i))^2, for t(n) = A000073(n+2).
G.f.: (x^18-x^17+x^16-x^14+4*x^12-6*x^11-x^10+4*x^9+4*x^8-6*x^7-9*x^6+2*x^5+8*x^4-4*x^3 -2*x^2-x-1) / (-x^24+x^20+9*x^16+32*x^12+9*x^8+15*x^4-1). - Alois P. Heinz, Jul 21 2025