A385872 Areas of nondegenerate triangles with perimeter A385737(n) whose side lengths are triangular numbers.
1452, 1176, 2376, 3780, 8316, 10626, 14742, 28500, 12558, 32340, 25200, 94500, 18792, 130680, 89250, 158760, 130680, 155250, 53508, 93636, 122958, 208278, 893970, 1199772, 2183328, 1130976, 2058210, 1414098, 3160080, 4000752, 3898800, 324324, 4900500, 1845120, 7427970
Offset: 1
Keywords
Examples
a(1) = 1452 is the area of the triangle [55, 55, 66] with perimeter A385737(1) = 176, where 55 and 66 are triangular numbers. a(2) = 1176 is the area of the triangle [28, 91, 105] with perimeter A385737(2) = 224, where 28, 91 and 105 are triangular numbers. From _David A. Corneth_, Jul 18 2025: (Start) From (u, v) = (28, 91) we get ((u + v)^2 - w^2) * t^2 = (w^2 - (v - u)^2) (119 - w^2) * t^2 = (w^2 - 63^2). Testing t = 2/3 gives the desired w. (End)
Links
- Felix Huber, Table of n, a(n) for n = 1..315
- Felix Huber, Maple program
- Eric Weisstein's World of Mathematics, Triangular Number
Programs
-
Maple
A385872:=proc(P) # To get all integer areas of triangles with perimeters <= P. local p,x,y,z,u,v,w,s,i; p:=[]; for z to floor((sqrt(24*P+9)-3)/6) do for x from z to floor((sqrt(4*P-3)-1)/2) do for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*P-x^2-x-z^2-z))-1)/2)) do u:=z*(z+1)/2; v:=y*(y+1)/2; w:=x*(x+1)/2; s:=(u+v+w)/2; if issqr(s*(s-u)*(s-v)*(s-w)) then p:=[op(p),[u+v+w,sqrt(s*(s-u)*(s-v)*(s-w))]] fi od od od; return seq(sort(p)[i,2],i=1..nops(p)) end proc; A385872(16236);
Comments