cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385894 a(n) = n^5/5 + n^3/3 + 7*n/15.

Original entry on oeis.org

0, 1, 10, 59, 228, 669, 1630, 3479, 6728, 12057, 20338, 32659, 50348, 74997, 108486, 153007, 211088, 285617, 379866, 497515, 642676, 819917, 1034286, 1291335, 1597144, 1958345, 2382146, 2876355, 3449404, 4110373, 4869014, 5735775, 6721824, 7839073, 9100202, 10518683
Offset: 0

Views

Author

Stefano Spezia, Jul 12 2025

Keywords

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 2.5.17 on page 77.

Crossrefs

Cf. A058031.

Programs

  • Magma
    [n^5/5 + n^3/3 + 7*n/15: n in [0..35]]; // Vincenzo Librandi, Jul 22 2025
  • Mathematica
    a[n_]:=n^5/5+n^3/3+7n/15; Array[a,36,0]

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
G.f.: x*(1 + 4*x + 14*x^2 + 4*x^3 + x^4)/(1 - x)^6.
E.g.f.: exp(x)*x*(15 + 60*x + 80*x^2 + 30*x^3 + 3*x^4)/15.
a(n) - a(n-1) = A058031(n) for n > 0.