cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385915 G.f. satisfies A(x) = -(A(x^3) + A(x^4)) / A(-x^2).

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 2, 2, 4, 7, 4, 11, 4, 12, 8, 19, 14, 29, 23, 47, 32, 74, 44, 110, 83, 164, 135, 276, 196, 439, 304, 663, 489, 1051, 768, 1656, 1192, 2581, 1856, 4046, 2888, 6317, 4547, 9848, 7130, 15440, 11106, 24186, 17377, 37729, 27231, 59062, 42614, 92484, 66682, 144664, 104328, 226371, 163174, 354230
Offset: 1

Views

Author

Paul D. Hanna, Aug 21 2025

Keywords

Comments

a(n) ~ c*d^n, where d = 1.25088706673007476636567388431275493535326837186841972110953..., and c = 0.52020182784673907154955829274303103782236665499908622597516... if n is even, or c = 0.29984063427406787235208627225075145443391314443990234248956... if n is odd.
Radius of convergence r of g.f. A(x) satisfies A(-r^2) = 0 and A(r^8) = -A(-r^6) where r = 0.79943267989338565357086513413379878916201504254400772696808...

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 2*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 7*x^10 + 4*x^11 + 11*x^12 + 4*x^13 + 12*x^14 + 8*x^15 + 19*x^16 + 14*x^17 + ...
where A(x) = -(A(x^3) + A(x^4)) / A(-x^2).
RELATED SERIES.
A(x^3) + A(x^4) = x^3 + x^4 + x^6 + x^8 + x^9 + 3*x^12 + 2*x^16 + 2*x^18 + 2*x^21 + 4*x^24 + 4*x^27 + 2*x^28 + 7*x^30 + 2*x^32 + 4*x^33 + ...
where A(x^3) + A(x^4) = -A(x)*A(-x^2).
Let B(x) satisfy A(B(x)) = x then
B(x) = x - x^2 + x^3 - 2*x^4 + 8*x^5 - 30*x^6 + 96*x^7 - 293*x^8 + 945*x^9 - 3274*x^10 + 11679*x^11 - 41637*x^12 + 148232*x^13 - 531931*x^14 + 1932116*x^15 + ...
where -x*A(-B(x)^2) = A(B(x)^3) + A(B(x)^4).
SPECIFIC VALUES.
The radius of convergence r satisfies A(-r^2) = 0 and A(r^8) = -A(-r^6) (see values given below).
Also, -A(r^2)*A(-r^4) = A(r^6) - A(-r^6) (verify using values given below).
Pertinent values of the form A(+-r^n) are as follows.
A(r^2) = 2.25568357277545334879615953002039818218094300680461...
A(r^3) = 1.13146138072432881698300088743197078335065492774082...
A(r^4) = 0.71641352894347364220461475600253964520851864903599...
A(r^6) = 0.35711522301431469636315144464034804067241658443788...
A(r^8) = 0.20089620831732266634625988585698697217669751459458...
A(r^9) = 0.15416703344989606171813799820914068395259643759003...
A(r^12) = 0.07313926779510423315813760034344399834214660198599...
A(-r^3) = -0.21985397321719823661610779049573983213878785101569...
A(-r^4) = -0.24738019022989345323378959578383752763617413768043...
A(-r^6) = -0.20089620831732266634625988585698697217669751459458...
A(-r^8) = -0.14204971726158381650811456142497985591356688167501...
A(-r^9) = -0.11730709739793756826670096033821084565818297459544...
A(-r^12) = -0.06376735751196287607391908207491894730221727143981...
...
A(1/2) = 1.076088418495368709480408335347599544142613316488183... where A(1/2) = -(A(1/8) + A(1/16)) / A(-1/4).
A(1/3) = 0.510506935002162613788658566406685686749792809989670... where A(1/3) = -(A(1/27) + A(1/81)) / A(-1/9).
A(1/4) = 0.336602030533756099597633504337162753515731187520108... where A(1/4) = -(A(1/64) + A(1/256)) / A(-1/16).
A(1/8) = 0.143075145485757320815392125895338831436230491529773...
A(1/16) = 0.066681035393498075099284704625662933959506411882465...
A(1/27) = 0.038463353126979968975084607088546188041484601759398...
A(1/64) = 0.015873074561121087188918170893728977022238322582751...
A(1/81) = 0.0125000229473609050663549233903594151185002805142699...
A(1/256) = 0.003921568859375695990570527967100959643728275680027...
A(-1/4) = -0.194924670941580390863804372991458359617278204823944...
A(-1/9) = -0.099828959373735016072583725604101146855506666073829...
A(-1/16) = -0.058807260874534978256299853660358029251607884417895...
...
		

Crossrefs

Cf. A385908.

Programs

  • PARI
    {a(n) = my(A=x+x^2 +x*O(x^n)); for(i=1, #binary(n+1), A = -(subst(A, x, x^3) + subst(A, x, x^4))/subst(A, x, -x^2) +x*O(x^n); ); polcoef(H=A, n)}
    for(n=1,100, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = -(A(x^3) + A(x^4)) / A(-x^2).
(2) -A(-x^2) = (A(x^3) - A(-x^3)) / (A(x) - A(-x)).