A385959 a(0) = 1; a(n) = a(n-1)*(b(n)+1)/(b(n)-1), where b(n) = A385958(n) is the largest prime p such that a(n) is an integer.
1, 2, 3, 4, 6, 7, 14, 15, 16, 18, 19, 38, 57, 76, 114, 115, 120, 121, 132, 135, 136, 138, 139, 278, 279, 310, 312, 314, 471, 628, 942, 1099, 2198, 2199, 2932, 4398, 5131, 10262, 10995, 10996, 16494, 19243, 38486, 41235, 41236, 41358, 41471, 41838, 41841, 46490, 55788, 55789, 111578, 167367, 168554, 252831, 252832, 252864
Offset: 0
Links
- Martin Fuller, Table of n, a(n) for n = 0..3460
Crossrefs
Cf. A385958.
Formula
a(n) = Product_{k=1..n} (b(k)+1)/(b(k)-1), where b(n) = A385958(n).
a(n) = (1+t(n))/(1-t(n)) with t(n) = tanh(Sum_{k=1..n} arctanh(1/b(k))).
Extensions
More terms from Morné Louw and Martin Fuller, Jul 15 2025
Comments