cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385968 Triprimes that are concatenations of three consecutive primes, and whose prime factors sum to a prime.

Original entry on oeis.org

199211223, 331337347, 367373379, 487491499, 653659661, 859863877, 102110311033, 106910871091, 111711231129, 112911511153, 130313071319, 143914471451, 165716631667, 178918011811, 214321532161, 226722692273, 246724732477, 274127492753, 274927532767, 284328512857, 330133073313, 362336313637
Offset: 1

Views

Author

Will Gosnell and Robert Israel, Jul 13 2025

Keywords

Examples

			a(3) = 367373379 is a term because it is the concatenation of consecutive primes 367, 373 and 379 and is the product of three primes 3 * 19 * 6445147 such that 3 + 19 + 6445147 = 6445169 is prime.
		

Crossrefs

Intersection of A107707 and A383114.

Programs

  • Maple
    tcat:= proc(a,b,c);
      c + 10^(1+ilog10(c))*(b + 10^(1+ilog10(b))*a)
    end proc:
    R:= NULL: count:= 0:
    q:= 2: r:= 3:
    while count < 100 do
      p:= q; q:= r; r:= nextprime(r);
      x:= tcat(p,q,r);
      F:= ifactors(x)[2];
      if add(t[2],t=F) = 3 and isprime(add(t[1]*t[2],t=F)) then
         count:= count+1; R:= R,x;
      fi;
    od:
    R;
  • Mathematica
    tp[p_]:=FromDigits[Join[IntegerDigits/@{Prime[p],Prime[p+1],Prime[p+2]}//Flatten]];Select[Array[tp,530],PrimeOmega[#]==3&&PrimeQ[Total[First/@FactorInteger[#]]]&] (* James C. McMahon, Jul 20 2025 *)