A385998 Numbers that are divisible by an equal number of distinct primes and squares.
2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 37, 40, 41, 43, 44, 45, 47, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 88, 89, 92, 97, 98, 99, 101, 103, 104, 107, 109, 113, 116, 117, 124, 127, 131, 135, 136, 137, 139, 147, 148, 149
Offset: 1
Keywords
Examples
12 is divisible by 2 distinct primes (2, 3) and by 2 squares (1, 4).
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
Programs
-
Maple
c:=(n,d)->igcd(n,d)=d and igcd(n/d,d)=d: b:=n->nops(select(k->c(n,k),[seq(1..n)])): A385998:=proc(n) option remember; local k; if n=1 then 2 else for k from procname(n-1)+1 do if b(k)=NumberTheory:-Omega(k,'distinct') then return k fi od fi; end proc; seq(A385998(n),n=1..63);
-
Mathematica
q[k_] := Module[{e = FactorInteger[k][[;; , 2]]}, k > 1 && Length[e] == Times @@ (1 + Floor[e/2])]; Select[Range[150], q] (* Amiram Eldar, Aug 05 2025 *)
-
PARI
isok(m) = my(d=divisors(m)); #select(isprime, d) == #select(issquare, d); \\ Michel Marcus, Aug 05 2025
Comments