A386205 Numbers k for which a solution to sigma_2(x) + sigma_2(k-x) = sigma_2(k) in positive integers exists.
100, 155, 434, 465, 639, 700, 783, 866, 875, 1085, 1100, 1300, 1395, 1700, 1705, 1900, 2015, 2170, 2300, 2625, 2900, 3100, 3255, 3565, 3700, 4100, 4123, 4185, 4300, 4473, 4495, 4700, 4774, 4900, 5115, 5300, 5642, 5735, 5900, 6045, 6062, 6100, 6355, 6665, 6700, 7100
Offset: 1
Keywords
Examples
100 is a term because sigma_2(4) + sigma_2(96) = 21 + 13650 = 13671 = sigma_2(100). 465 is a term because sigma_2(57) + sigma_2(408) = 3620 + 246500 = 250120 = sigma_2(465).
Programs
-
Maple
with(NumberTheory): A:=proc(n) option remember; local k,x; if n=1 then 100 else for k from procname(n-1)+1 do for x to k/2 do if sigma[2](x)+sigma[2](k-x)=sigma[2](k) then return k fi od od fi; end proc; seq(A(n),n=1..5);
-
Mathematica
f[n_]:=Select[Range[n/2],DivisorSigma[2,#]==DivisorSigma[2,n]-DivisorSigma[2,n-#]&]; Select[Range[4100],f[#]!={}&] (* Ivan N. Ianakiev, Jul 29 2025 *)
-
PARI
isok(k) = my(sk2=sigma(k,2)); for (i=1, k-1, if (sigma(i,2) + sigma(k-i,2) == sk2, return(1))); \\ Michel Marcus, Jul 29 2025
Comments