cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386205 Numbers k for which a solution to sigma_2(x) + sigma_2(k-x) = sigma_2(k) in positive integers exists.

Original entry on oeis.org

100, 155, 434, 465, 639, 700, 783, 866, 875, 1085, 1100, 1300, 1395, 1700, 1705, 1900, 2015, 2170, 2300, 2625, 2900, 3100, 3255, 3565, 3700, 4100, 4123, 4185, 4300, 4473, 4495, 4700, 4774, 4900, 5115, 5300, 5642, 5735, 5900, 6045, 6062, 6100, 6355, 6665, 6700, 7100
Offset: 1

Views

Author

Felix Huber, Jul 24 2025

Keywords

Comments

Since sigma_2(n) is multiplicative, for every prime p>5, 100*p is a term. In other words, for every prime p>5, sigma_2(100*p) = sigma_2(4)*sigma_2(p) + sigma_2(96)*sigma_2(p). - Ivan N. Ianakiev, Jul 29 2025

Examples

			100 is a term because sigma_2(4) + sigma_2(96) = 21 + 13650 = 13671 = sigma_2(100).
465 is a term because sigma_2(57) + sigma_2(408) = 3620 + 246500 = 250120 = sigma_2(465).
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A:=proc(n)
        option remember;
        local k,x;
        if n=1 then
            100
        else
            for k from procname(n-1)+1 do
                for x to k/2 do
                    if sigma[2](x)+sigma[2](k-x)=sigma[2](k) then
                        return k
                    fi
                od
            od
        fi;
    end proc;
    seq(A(n),n=1..5);
  • Mathematica
    f[n_]:=Select[Range[n/2],DivisorSigma[2,#]==DivisorSigma[2,n]-DivisorSigma[2,n-#]&]; Select[Range[4100],f[#]!={}&] (* Ivan N. Ianakiev, Jul 29 2025 *)
  • PARI
    isok(k) = my(sk2=sigma(k,2)); for (i=1, k-1, if (sigma(i,2) + sigma(k-i,2) == sk2, return(1))); \\ Michel Marcus, Jul 29 2025