cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386215 Values of v in the (1,3)-quartals (m,u,v,w) having m=2; i.e., values of v for solutions to m + u^3 = v + w^3, in positive integers, with m

Original entry on oeis.org

9, 21, 28, 39, 58, 65, 63, 100, 119, 126, 93, 154, 191, 210, 217, 129, 220, 281, 318, 337, 344, 171, 298, 389, 450, 487, 506, 513, 219, 388, 515, 606, 667, 704, 723, 730, 273, 490, 659, 786, 877, 938, 975, 994, 1001, 333, 604, 821, 990, 1117, 1208, 1269
Offset: 1

Views

Author

Clark Kimberling, Jul 22 2025

Keywords

Comments

A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m

Examples

			First thirty (1,3)-quartals (2,u,v,w):
  m     u      v     w
  2     2      9     1
  2     3     21     2
  2     3     28     1
  2     4     39     3
  2     4     58     2
  2     4     65     1
  2     5     63     4
  2     5    100     3
  2     5    119     2
  2     5    126     1
  2     6     93     5
  2     6    154     4
  2     6    191     3
  2     6    210     2
  2     6    217     1
  2     7    129     6
  2     7    220     5
  2     7    281     4
  2     7    318     3
  2     7    337     2
  2     7    344     1
  2     8    171     7
  2     8    298     6
  2     8    389     5
  2     8    450     4
  2     8    487     3
  2     8    506     2
  2     8    513     1
  2     9    219     8
  2     9    388     7
2^1 + 3^3 = 21^1 + 2^3, so (2,3,21,2) is in the list.
		

Crossrefs

Programs

  • Maple
    seq(seq(2 + u^3 - w^3, w = u-1 .. 1,-1),u=2..20); # Robert Israel, Jul 27 2025
  • Mathematica
    quartals[m_, p_, q_, max_] :=
      Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs},
       For[u = 1, u <= max, u++, lhs = m^p + u^q;
        AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];];
       For[v = m + 1, v <= max, v++,
        For[w = 1, w <= max, w++, rhs = v^p + w^q;
          If[KeyExistsQ[lhsD, rhs],
           Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];];
       ans = SortBy[ans, #[[2]] &];
       Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ",
         ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ",
         ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i,
         Length[ans]}]; ans];
    solns = quartals[2, 1, 3, 2000]  (* solutions restricted to v<2000 *)
    Grid[solns]
    u1 = Map[#[[2]] &, solns]  (*u, A003057 *)
    v1 = Map[#[[3]] &, solns]  (*v, A386215 *)
    w1 = Map[#[[4]] &, solns]  (*w, A004736 *)
    (* Peter J. C. Moses, Jun 20 2025 *)

Formula

a(n) = 2 + u^3 - (u*(u-1)/2 + 1 - n)^3 where u = floor((3+sqrt(8*n-7))/2). - Robert Israel, Jul 27 2025