A385882
Values of v in the (1,3)-quartals (m,u,v,w) having m=1; i.e., values of v for solutions to m^1 + u^3 = v^1 + w^3, in positive integers, with m
8, 20, 27, 38, 57, 64, 62, 99, 118, 125, 92, 153, 190, 209, 216, 128, 219, 280, 317, 336, 343, 170, 297, 388, 449, 486, 505, 512, 218, 387, 514, 605, 666, 703, 722, 729, 272, 489, 658, 785, 876, 937, 974, 993, 1000, 332, 603, 820, 989, 1116, 1207, 1268, 1305
Offset: 1
Keywords
A386217
Values of v in the (1,3)-quartals (m,u,v,w) having m=3; i.e., values of v for solutions to 3 + u^3 = v + w^3, in positive integers, with m
10, 22, 29, 40, 59, 66, 64, 101, 120, 127, 94, 155, 192, 211, 218, 130, 221, 282, 319, 338, 345, 172, 299, 390, 451, 488, 507, 514, 220, 389, 516, 607, 668, 705, 724, 731, 274, 491, 660, 787, 878, 939, 976, 995, 1002, 334, 605, 822, 991, 1118, 1209, 1270, 1307
Offset: 1
Keywords
Comments
A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m
Examples
First 20 (1,3)-quartals (3,u,v,w): m u v w 3 2 10 1 3 3 22 2 3 3 29 1 3 4 40 3 3 4 59 2 3 4 66 1 3 5 64 4 3 5 101 3 3 5 120 2 3 5 127 1 3 6 94 5 3 6 155 4 3 6 192 3 3 6 211 2 3 6 218 1 3 7 130 6 3 7 221 5 3 7 282 4 3 7 319 3 3 7 338 2 3^1 + 4^3 = 40^1 + 3^3, so (3,4,40,3) is in the list.
Programs
-
Mathematica
quartals[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs}, For[u = 1, u <= max, u++, lhs = m^p + u^q; AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];]; For[v = m + 1, v <= max, v++, For[w = 1, w <= max, w++, rhs = v^p + w^q; If[KeyExistsQ[lhsD, rhs], Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];]; ans = SortBy[ans, #[[2]] &]; Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ", ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ", ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i, Length[ans]}]; ans]; solns = quartals[3, 1, 3, 2000] Grid[solns] (* Peter J. C. Moses, Jun 21 2025 *)
Formula
As a triangle T(u,k), 1 <= k <= u-1, T(u,k) = 3+u^3-(u-k)^3. - Pontus von Brömssen, Aug 03 2025
Extensions
Data corrected by Sean A. Irvine, Aug 01 2025
A386628
Values of v in the (2,3)-quartals (m,u,v,w) having m=1; i.e., values of v for solutions to 1 + u^3 = v^2 + w^3, in positive integers, with mA386217.
8, 27, 27, 64, 125, 134, 123, 181, 126, 207, 216, 251, 253, 217, 269, 300, 267, 343, 242, 379, 255, 417, 512, 246, 435, 615, 636, 729, 514, 867, 963, 1000, 512, 267, 1236, 1023, 1331, 1086, 1441, 1728, 1743, 1782, 1728, 1977, 2145, 2197, 2295, 1124, 2367
Offset: 1
Keywords
A386629
Values of w in the (2,3)-quartals (m,u,v,w) having m=1; i.e., values of v for solutions to 1 + u^3 = v^2 + w^3, in positive integers, with mA386627.
1, 1, 10, 1, 1, 12, 21, 2, 30, 3, 1, 10, 17, 30, 12, 24, 34, 1, 42, 24, 48, 12, 1, 61, 60, 30, 9, 1, 69, 30, 24, 1, 94, 108, 54, 88, 1, 88, 76, 1, 42, 10, 73, 70, 52, 1, 10, 160, 51, 54, 72, 1, 88, 16, 1, 147, 112, 192, 244, 30, 196, 1, 196, 12, 34, 1, 229
Offset: 1
Keywords
A386219
Values of v in the (1,3)-quartals (m,u,v,w) having m=4; i.e., values of v for solutions to 4 + u^3 = v + w^3, in positive integers, with m
11, 23, 30, 41, 60, 67, 65, 102, 121, 128, 95, 156, 193, 212, 219, 131, 222, 283, 320, 339, 346, 173, 300, 391, 452, 489, 508, 515, 221, 390, 517, 608, 669, 706, 725, 732, 275, 492, 661, 788, 879, 940, 977, 996, 1003, 335, 606, 823, 992, 1119, 1210, 1271, 1308
Offset: 1
Keywords
Comments
A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m
Examples
First 20 (1,3)-quartals (4,u,v,w): m u v w 4 2 11 1 4 3 23 2 4 3 30 1 4 4 41 3 4 4 60 2 4 4 67 1 4 5 65 4 4 5 102 3 4 5 121 2 4 5 128 1 4 6 95 5 4 6 156 4 4 6 193 3 4 6 212 2 4 6 219 1 4 7 131 6 4 7 222 5 4 7 283 4 4 7 320 3 4 7 339 2 4^1 + 5^3 = 65^1 + 4^3, so (4,5,65,4) is in the list.
Programs
-
Mathematica
quartals[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs}, For[u = 1, u <= max, u++, lhs = m^p + u^q; AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];]; For[v = m + 1, v <= max, v++, For[w = 1, w <= max, w++, rhs = v^p + w^q; If[KeyExistsQ[lhsD, rhs], Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];]; ans = SortBy[ans, #[[2]] &]; Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ", ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ", ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i, Length[ans]}]; ans]; solns = quartals[4, 1, 3, 2000] Grid[solns] (* Peter J. C. Moses, Jun 20 2025 *)
Extensions
Data corrected by Sean A. Irvine, Aug 11 2025
A386627 Values of u in the (2,3)-quartals (m,u,v,w) having m=1; i.e., values of v for solutions to 1 + u^3 = v^2 + w^3, in positive integers, with v > 1; see Comments.
4, 9, 12, 16, 25, 27, 29, 32, 35, 35, 36, 40, 41, 42, 42, 47, 48, 49, 51, 54, 56, 56, 64, 66, 74, 74, 74, 81, 84, 92, 98, 100, 103, 110, 119, 120, 121, 123, 136, 144, 146, 147, 150, 162, 168, 169, 174, 175, 179, 188, 191, 196, 198, 204, 225, 227, 232, 236
Offset: 1
Keywords
Comments
A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m
Includes all squares > 1, as 1 + (i^2)^3 = v^2 + w^3 with w = 1, v = i^3. - Robert Israel, Jul 28 2025
Examples
First 20 (2,3)-quartals (1,u,v,w): m u v w 1 4 8 1 1 9 27 1 1 12 27 10 1 16 64 1 1 25 125 1 1 27 134 12 1 29 123 21 1 32 181 2 1 35 126 30 1 35 207 3 1 36 216 1 1 40 251 10 1 41 253 17 1 42 217 30 1 42 269 12 1 47 300 24 1 48 267 34 1 49 343 1 1 51 242 42 1 54 379 24 1^2 + 12^3 = 27^2 + 10^3 = 1729, so (1,12,27,10) is in the list.
Programs
-
Maple
f:= proc(u) local t; t:= 1+u^3; u$nops(select(w -> issqr(t-w^3), [$1 .. u-1])) end proc: map(f, [$1..1000]); # Robert Israel, Jul 28 2025
-
Mathematica
quart[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs}, For[u = 1, u <= max, u++, lhs = m^p + u^q; AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];]; For[v = m + 1, v <= max, v++, For[w = 1, w <= max, w++, rhs = v^p + w^q; If[KeyExistsQ[lhsD, rhs], Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];]; Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ", ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ", ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i, Length[ans]}]; ans]; solns = quart[1, 2, 3, 6000] (* Peter J. C. Moses, Jun 21 2025 *)
Comments
Examples
Crossrefs
Programs
Mathematica