A385882
Values of v in the (1,3)-quartals (m,u,v,w) having m=1; i.e., values of v for solutions to m^1 + u^3 = v^1 + w^3, in positive integers, with m
8, 20, 27, 38, 57, 64, 62, 99, 118, 125, 92, 153, 190, 209, 216, 128, 219, 280, 317, 336, 343, 170, 297, 388, 449, 486, 505, 512, 218, 387, 514, 605, 666, 703, 722, 729, 272, 489, 658, 785, 876, 937, 974, 993, 1000, 332, 603, 820, 989, 1116, 1207, 1268, 1305
Offset: 1
Keywords
A386217
Values of v in the (1,3)-quartals (m,u,v,w) having m=3; i.e., values of v for solutions to 3 + u^3 = v + w^3, in positive integers, with m
10, 22, 29, 40, 59, 66, 64, 101, 120, 127, 94, 155, 192, 211, 218, 130, 221, 282, 319, 338, 345, 172, 299, 390, 451, 488, 507, 514, 220, 389, 516, 607, 668, 705, 724, 731, 274, 491, 660, 787, 878, 939, 976, 995, 1002, 334, 605, 822, 991, 1118, 1209, 1270, 1307
Offset: 1
Keywords
Comments
A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m
Examples
First 20 (1,3)-quartals (3,u,v,w): m u v w 3 2 10 1 3 3 22 2 3 3 29 1 3 4 40 3 3 4 59 2 3 4 66 1 3 5 64 4 3 5 101 3 3 5 120 2 3 5 127 1 3 6 94 5 3 6 155 4 3 6 192 3 3 6 211 2 3 6 218 1 3 7 130 6 3 7 221 5 3 7 282 4 3 7 319 3 3 7 338 2 3^1 + 4^3 = 40^1 + 3^3, so (3,4,40,3) is in the list.
Programs
-
Mathematica
quartals[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs}, For[u = 1, u <= max, u++, lhs = m^p + u^q; AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];]; For[v = m + 1, v <= max, v++, For[w = 1, w <= max, w++, rhs = v^p + w^q; If[KeyExistsQ[lhsD, rhs], Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];]; ans = SortBy[ans, #[[2]] &]; Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ", ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ", ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i, Length[ans]}]; ans]; solns = quartals[3, 1, 3, 2000] Grid[solns] (* Peter J. C. Moses, Jun 21 2025 *)
Formula
As a triangle T(u,k), 1 <= k <= u-1, T(u,k) = 3+u^3-(u-k)^3. - Pontus von Brömssen, Aug 03 2025
Extensions
Data corrected by Sean A. Irvine, Aug 01 2025
Comments
Examples
Crossrefs
Programs
Mathematica