cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385882 Values of v in the (1,3)-quartals (m,u,v,w) having m=1; i.e., values of v for solutions to m^1 + u^3 = v^1 + w^3, in positive integers, with m

Original entry on oeis.org

8, 20, 27, 38, 57, 64, 62, 99, 118, 125, 92, 153, 190, 209, 216, 128, 219, 280, 317, 336, 343, 170, 297, 388, 449, 486, 505, 512, 218, 387, 514, 605, 666, 703, 722, 729, 272, 489, 658, 785, 876, 937, 974, 993, 1000, 332, 603, 820, 989, 1116, 1207, 1268, 1305
Offset: 1

Views

Author

Clark Kimberling, Jul 21 2025

Keywords

Comments

A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m

Examples

			First thirty (1,3)-quartals (1,u,v,w):
  m   u    v   w
  1   2    8   1
  1   3   20   2
  1   3   27   1
  1   4   38   3
  1   4   57   2
  1   4   64   1
  1   5   62   4
  1   5   99   3
  1   5  118   2
  1   5  125   1
  1   6   92   5
  1   6  153   4
  1   6  190   3
  1   6  209   2
  1   6  216   1
  1   7  128   6
  1   7  219   5
  1   7  280   4
  1   7  317   3
  1   7  336   2
  1   7  343   1
  1   8  170   7
  1   8  297   6
  1   8  388   5
  1   8  449   4
  1   8  486   3
  1   8  505   2
  1   8  512   1
  1   9  218   8
  1   9  387   7
1^1 + 4^3 = 57^1 + 2^3, so (1,4,57,2) is in the list.
		

Crossrefs

Guide to related sequences:
m | u | v | w
--+---------+---------+--------
--+---------+---------+---------

Programs

  • Mathematica
    quartals[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs},
       For[u = 1, u <= max, u++, lhs = m^p + u^q;
        AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];];
       For[v = m + 1, v <= max, v++,
        For[w = 1, w <= max, w++, rhs = v^p + w^q; If[KeyExistsQ[lhsD, rhs],
           Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];];
       ans = SortBy[ans, #[[2]] &];
       Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ",
         ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ",
         ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i,
         Length[ans]}]; ans];
    solns = quartals[1, 1, 3, 2000] (* Solutions restricted to v<2000 *)
    Grid[solns]
    u1 = Map[#[[2]] &, solns]   (*u, A003057 *)
    v1 = Map[#[[3]] &, solns]   (*v, A385882 *)
    w1 = Map[#[[4]] &, solns]   (*w, A004736 *)
    (* Peter J. C. Moses, Jun 20 2025 *)

A386217 Values of v in the (1,3)-quartals (m,u,v,w) having m=3; i.e., values of v for solutions to 3 + u^3 = v + w^3, in positive integers, with m

Original entry on oeis.org

10, 22, 29, 40, 59, 66, 64, 101, 120, 127, 94, 155, 192, 211, 218, 130, 221, 282, 319, 338, 345, 172, 299, 390, 451, 488, 507, 514, 220, 389, 516, 607, 668, 705, 724, 731, 274, 491, 660, 787, 878, 939, 976, 995, 1002, 334, 605, 822, 991, 1118, 1209, 1270, 1307
Offset: 1

Author

Clark Kimberling, Jul 28 2025

Keywords

Comments

A 4-tuple (m,u,v,w) is a (p,q)-quartal if m,u,v,w are positive integers such that m

Examples

			First 20 (1,3)-quartals (3,u,v,w):
   m   u    v   w
   3   2   10   1
   3   3   22   2
   3   3   29   1
   3   4   40   3
   3   4   59   2
   3   4   66   1
   3   5   64   4
   3   5  101   3
   3   5  120   2
   3   5  127   1
   3   6   94   5
   3   6  155   4
   3   6  192   3
   3   6  211   2
   3   6  218   1
   3   7  130   6
   3   7  221   5
   3   7  282   4
   3   7  319   3
   3   7  338   2
3^1 + 4^3 = 40^1 + 3^3, so (3,4,40,3) is in the list.
		

Crossrefs

Programs

  • Mathematica
    quartals[m_, p_, q_, max_] := Module[{ans = {}, lhsD = <||>, lhs, v, u, w, rhs},
       For[u = 1, u <= max, u++, lhs = m^p + u^q;
        AssociateTo[lhsD, lhs -> Append[Lookup[lhsD, lhs, {}], u]];];
       For[v = m + 1, v <= max, v++,
        For[w = 1, w <= max, w++, rhs = v^p + w^q;
          If[KeyExistsQ[lhsD, rhs],
           Do[AppendTo[ans, {m, u, v, w}], {u, lhsD[rhs]}];];];];
       ans = SortBy[ans, #[[2]] &];
       Do[Print["Solution ", i, ": ", ans[[i]], " (", m, "^", p, " + ",
         ans[[i, 2]], "^", q, " = ", ans[[i, 3]], "^", p, " + ",
         ans[[i, 4]], "^", q, " = ", m^p + ans[[i, 2]]^q, ")"], {i,
         Length[ans]}]; ans];
    solns = quartals[3, 1, 3, 2000]
    Grid[solns]
    (* Peter J. C. Moses, Jun 21 2025 *)

Formula

As a triangle T(u,k), 1 <= k <= u-1, T(u,k) = 3+u^3-(u-k)^3. - Pontus von Brömssen, Aug 03 2025
a(n) = A385882(n)+2 = A386215(n)+1 = A386219(n)-1. - Pontus von Brömssen, Aug 04 2025

Extensions

Data corrected by Sean A. Irvine, Aug 01 2025
Showing 1-2 of 2 results.