A386222 Number of 3-dimensional tilings of a 2 X 2 X (n+1) box with the two upper right cells removed, using 2 X 2 X 1 plates and 1 X 2 X 1 dominos.
1, 5, 34, 201, 1241, 7538, 46045, 280693, 1712338, 10443297, 63697825, 388506066, 2369604597, 14452808029, 88151396594, 537657790873, 3279312211305, 20001361622066, 121993408939853, 744068928339589, 4538266259447698, 27680043927136849, 168827650973959281
Offset: 0
Examples
Here is one of the a(1)=5 ways to tile the shape for n=1, in this case with one flat plate on the bottom and one domino on top. ____ / /| / / |____ / / / /| /___/ / / | | | / / / |___|/___/ / | | / |_______| /.
Links
- Index entries for linear recurrences with constant coefficients, signature (5,9,-14).
Crossrefs
Cf. A359884
Programs
-
Mathematica
LinearRecurrence[{5, 9, -14}, {1, 5, 34}, 30]
Formula
G.f.: 1/(1 - 5*x - 9*x^2 + 14*x^3).
a(n) = 5*a(n-1) + 9*a(n-2) - 14*a(n-3) for n >= 3.
a(n) = A359884(n) + 2*a(n-1).
Comments