cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386230 G.f. A(x) satisfies A(x) = 1/( (1-x)^3 * (1 - x*A(x) - x^2*A'(x)) ).

Original entry on oeis.org

1, 4, 18, 114, 945, 9399, 106645, 1342028, 18409725, 272154510, 4300884555, 72225827628, 1283066570500, 24025524690426, 472822444534395, 9755834028122904, 210600429263424372, 4747647482075588598, 111583282733838959542, 2729989048854423409090, 69430953497076613542366
Offset: 0

Views

Author

Seiichi Manyama, Jul 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 21; A[] = 1; Do[A[x] = 1/((1-x)^3(1-x*A[x]-x^2*A'[x])) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jul 16 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=binomial(i+2, 2)+(i+1)/2*sum(j=0, i-1, v[j+1]*v[i-j])); v;

Formula

a(n) = binomial(n+2,2) + (n+1)/2 * Sum_{k=0..n-1} a(k) * a(n-1-k).
a(n) = binomial(n+2,2) + Sum_{k=0..n-1} (1 + k) * a(k) * a(n-1-k).

A386263 G.f. A(x) satisfies A(x) = 1/( (1-x)^2 * (1 - x*A(x) - 2*x^2*A'(x)) ).

Original entry on oeis.org

1, 3, 15, 121, 1333, 18091, 286867, 5158385, 103226313, 2269474723, 54307112951, 1404350909545, 39020894189245, 1159475912653163, 36695329075865083, 1232560854783934561, 43801551907551784721, 1642199848241650875907, 64789265823476378293855
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms=19; A[]=1; Do[A[x]=1/( (1-x)^2 * (1 - x*A[x] - 2*x^2*A'[x]) ) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=i+1+i*sum(j=0, i-1, v[j+1]*v[i-j])); v;

Formula

a(n) = n + 1 + n * Sum_{k=0..n-1} a(k) * a(n-1-k).
a(n) = n + 1 + Sum_{k=0..n-1} (1 + 2*k) * a(k) * a(n-1-k).
Showing 1-2 of 2 results.