A386317 Integers t which satisfy 3/2 <= abundancy(t) < 2 but which are not k-deficient-perfect numbers A331627.
14, 22, 26, 34, 38, 46, 58, 62, 68, 74, 76, 82, 86, 92, 94, 98, 106, 110, 116, 118, 122, 124, 134, 142, 146, 147, 148, 158, 164, 166, 171, 172, 178, 188, 194, 202, 206, 212, 214, 218, 225, 226, 236, 242, 244, 248, 254, 255, 262, 268, 274, 278, 284, 285, 286, 292, 296, 298, 302, 314
Offset: 1
Keywords
Examples
13 is not in this sequence because abundancy(13) = 14/13 (14/13 < 3/2). 14 is in this sequence because abundancy(14) = 12/7 (3/2 <= 12/7 < 2) but 14 is not a k-deficient-perfect number (therefore is not included in A331627). 15 is not in this sequence because abundancy(15) = 8/5 (3/2 <= 8/5 < 2) but 15 is a k-deficient-perfect number (therefore is included in A331627).
Programs
-
Maxima
(n:1, abundancy(x):=divsum(x)/x, for t:1 thru 500 do (if abundancy(t)>=3/2 and abundancy(t)<2 then (A:append(args(powerset(delete(t,divisors(t)))),[{0}]), b:length(A), for i:1 unless (divsum(t)+apply("+" , args(A[i])))/t=2 or i>=b do j:i, if j>=b-1 then (print(n , "" , t), n:n+1))));
-
PARI
isok(m) = my(d=divisors(m), ss=vecsum(d), ab=sigma(m)/m); if ((ab>=3/2) && (ab<2), d = Vec(d, #d-1); forsubset(#d, s, if (#s && (sum(i=1, #s, d[s[i]]) == 2*m - ss), return(0))); return(1)); \\ Michel Marcus, Jul 19 2025
Comments