cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154761 Primes without {1, 9} as digits.

Original entry on oeis.org

2, 3, 5, 7, 23, 37, 43, 47, 53, 67, 73, 83, 223, 227, 233, 257, 263, 277, 283, 307, 337, 347, 353, 367, 373, 383, 433, 443, 457, 463, 467, 487, 503, 523, 547, 557, 563, 577, 587, 607, 643, 647, 653, 673, 677, 683, 727, 733, 743, 757, 773, 787, 823, 827, 853
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 15 2009

Keywords

Crossrefs

Programs

  • Maple
    no19 := proc(n) local d ; for d in convert(n,base,10) do if d in {1,9} then RETURN(false) ; fi; od: RETURN(true) ; end: for n from 1 to 400 do p := ithprime(n) ; if no19(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Jan 18 2009
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 1] == 0 && DigitCount[#, 10, 9] == 0 &] (* Jason Bard, Jul 20 2025 *)
  • Python
    print(list(islice(primes_with("02345678"), 41))) # uses function/imports in A385776

Extensions

443 inserted by R. J. Mathar, Jan 18 2009

A361822 Primes without {2, 5} as digits.

Original entry on oeis.org

3, 7, 11, 13, 17, 19, 31, 37, 41, 43, 47, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 163, 167, 173, 179, 181, 191, 193, 197, 199, 307, 311, 313, 317, 331, 337, 347, 349, 367, 373, 379, 383, 389, 397, 401, 409, 419, 431, 433, 439, 443, 449, 461, 463
Offset: 1

Views

Author

Bernard Schott, Mar 26 2023

Keywords

Comments

Subsequence of primes that are in A361780.

Crossrefs

Intersection of A000040 and A361780.
Cf. A079651 (primes with {1, 4, 7}), A079652 (primes with {0, 3, 6, 8, 9}).
Cf. A247052 (primes with {1, 2, 4, 5, 7}), A034470 (primes with {0, 2, 3, 5, 6, 8, 9}).
Cf. A106116, A154761, A386320 - A386358 (primes without two decimal digits).
Cf. A385776.

Programs

  • Maple
    filter:= proc(n) convert(convert(n,base,10),set) intersect {2,5} = {} end proc:
    select(filter, [seq(ithprime(i),i=1..1000)]); # Robert Israel, Mar 26 2023
  • Mathematica
    Select[Prime[Range[100]], AllTrue[IntegerDigits[#], ! MemberQ[{2, 5}, #1] &] &] (* Amiram Eldar, Mar 26 2023 *)
  • Python
    print(list(islice(primes_with("01346789"), 41))) # uses function/imports in A385776. Jason Bard, Jul 20 2025
Showing 1-2 of 2 results.