cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386367 a(n) = Sum_{k=0..n-1} binomial(5*k,k) * binomial(5*n-5*k-2,n-k-1).

Original entry on oeis.org

0, 1, 13, 163, 2021, 24930, 306655, 3765448, 46182101, 565939603, 6931070490, 84845250370, 1038235255415, 12700966517968, 155336699256808, 1899439862390640, 23222289820948405, 283872591297526505, 3469680960837171415, 42404345427419774621, 518193229118757697930
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2025

Keywords

Examples

			(1/5) * log( Sum_{k>=0} binomial(5*k,k)*x^k ) = x + 13*x^2/2 + 163*x^3/3 + 2021*x^4/4 + 4986*x^5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(5*k, k)*binomial(5*n-5*k-2, n-k-1));
    
  • PARI
    my(N=30, x='x+O('x^N), g=x*sum(k=0, N, binomial(5*k+3, k)/(k+1)*x^k)); concat(0, Vec(g*(1-g)/(1-5*g)^2))

Formula

G.f.: g*(1-g)/(1-5*g)^2 where g*(1-g)^4 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/5) * log( Sum_{k>=0} binomial(5*k,k)*x^k ).
G.f.: (g-1)/(5-4*g)^2 where g=1+x*g^5.
a(n) = Sum_{k=0..n-1} binomial(5*k-2+l,k) * binomial(5*n-5*k-l,n-k-1) for every real number l.
a(n) = Sum_{k=0..n-1} 4^(n-k-1) * binomial(5*n-1,k).
a(n) = Sum_{k=0..n-1} 5^(n-k-1) * binomial(4*n+k-1,k).