cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386380 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} a(6*k) * a(n-1-6*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 15, 24, 34, 45, 57, 70, 154, 253, 368, 500, 650, 819, 1827, 3045, 4495, 6200, 8184, 10472, 23562, 39627, 59052, 82251, 109668, 141778, 320866, 543004, 814506, 1142295, 1533939, 1997688, 4540200, 7718340, 11633440, 16398200, 22137570
Offset: 0

Views

Author

Seiichi Manyama, Jul 20 2025

Keywords

Crossrefs

Programs

  • Maple
    A386380 := proc(n)
        option remember ;
        if n = 0 then
            1;
        else
            add(procname(6*k)*procname(n-1-6*k),k=0..floor((n-1)/6)) ;
        end if;
    end proc:
    seq(A386380(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\6, 7, n%6+1);

Formula

For k=0..5, a(6*n+k) = (k+1) * binomial(7*n+k+1,n)/(7*n+k+1).
G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..5} A(w^k*x)), where w = exp(Pi*i/3).