A386380 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} a(6*k) * a(n-1-6*k).
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 15, 24, 34, 45, 57, 70, 154, 253, 368, 500, 650, 819, 1827, 3045, 4495, 6200, 8184, 10472, 23562, 39627, 59052, 82251, 109668, 141778, 320866, 543004, 814506, 1142295, 1533939, 1997688, 4540200, 7718340, 11633440, 16398200, 22137570
Offset: 0
Keywords
Links
- Wikipedia, Fuss-Catalan number
Crossrefs
Programs
-
Maple
A386380 := proc(n) option remember ; if n = 0 then 1; else add(procname(6*k)*procname(n-1-6*k),k=0..floor((n-1)/6)) ; end if; end proc: seq(A386380(n),n=0..80) ; # R. J. Mathar, Jul 30 2025
-
PARI
apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r); a(n) = apr(n\6, 7, n%6+1);
Formula
For k=0..5, a(6*n+k) = (k+1) * binomial(7*n+k+1,n)/(7*n+k+1).
G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..5} A(w^k*x)), where w = exp(Pi*i/3).