A386388 a(n) is the number of complement pairs of 2n-bead balanced bicolor necklaces.
0, 0, 0, 1, 3, 11, 36, 118, 395, 1337, 4598, 15986, 56270, 199854, 716132, 2584754, 9391051, 34315811, 126040590, 465062362, 1723070794, 6407806952, 23910175804, 89493721076, 335912391966, 1264105728842, 4768446886764, 18027215662284, 68291878325138
Offset: 0
Keywords
Examples
n | A003239(n) A000013(n) | 2*a(n) a(n) 0 | 1 1 | 0 0 1 | 1 1 | 0 0 2 | 2 2 | 0 0 3 | 4 2 | 2 1 4 | 10 4 | 6 3 5 | 26 4 | 22 11 6 | 80 8 | 72 36 7 | 246 10 | 236 118 8 | 810 20 | 790 395 9 | 2704 30 | 2674 1337 10 | 9252 56 | 9196 4598 Examples for n=4 with necklaces of length 8: A000013(4) = 4 necklaces are self-complementary: 00001111, 00110011, 01010101, 00101101 (compare A385665) There are a(n) = 3 pairs of complementary necklaces: (00110101, 00101011), (00100111, 00011011), (00010111, 00011101)
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1670
Programs
-
Mathematica
a[0]=0;a[n_]:=( Sum[ EulerPhi[n/k]*Binomial[2k, k]/(2n), {k, Divisors[n]}]- Fold[ #1 + EulerPhi[2#2]2^(n/#2)/(2n) &, 0, Divisors[n]])/2;Array[a,29,0] (* James C. McMahon, Jul 30 2025 *)
Comments