cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386411 Decimal expansion of the volume of an augmented truncated tetrahedron with unit edge.

Original entry on oeis.org

3, 8, 8, 9, 0, 8, 7, 2, 9, 6, 5, 2, 6, 0, 1, 1, 3, 8, 4, 2, 0, 4, 6, 4, 3, 9, 9, 1, 5, 7, 6, 6, 6, 9, 7, 1, 6, 0, 6, 6, 5, 9, 7, 6, 5, 7, 2, 8, 6, 6, 0, 7, 2, 0, 1, 2, 3, 5, 8, 6, 9, 2, 7, 9, 4, 7, 4, 5, 1, 4, 3, 1, 5, 7, 7, 0, 7, 9, 4, 3, 5, 6, 8, 3, 8, 5, 6, 5, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 21 2025

Keywords

Comments

The augmented truncated tetrahedron is Johnson solid J_65.

Examples

			3.889087296526011384204643991576669716066597657...
		

Crossrefs

Cf. A386412 (surface area).

Programs

  • Mathematica
    First[RealDigits[11/Sqrt[8], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J65", "Volume"], 10, 100]]

Formula

Equals 11/(2*sqrt(2)) = 11/A010466.
Equals A377275 + 10*A020829.
Equals the largest root of 8*x^2 - 121.

A386460 Decimal expansion of the surface area of an augmented truncated cube with unit edges.

Original entry on oeis.org

3, 4, 3, 3, 8, 2, 8, 8, 0, 4, 6, 4, 3, 7, 5, 8, 2, 3, 6, 8, 5, 9, 9, 2, 2, 6, 2, 6, 6, 6, 1, 4, 5, 9, 7, 8, 8, 6, 5, 2, 5, 1, 3, 4, 5, 1, 5, 2, 0, 0, 6, 2, 2, 6, 1, 5, 9, 3, 4, 2, 1, 8, 3, 1, 8, 2, 6, 3, 1, 2, 3, 8, 3, 5, 3, 4, 7, 4, 7, 0, 4, 9, 9, 7, 4, 7, 3, 1, 3, 9
Offset: 2

Views

Author

Paolo Xausa, Jul 23 2025

Keywords

Comments

The augmented truncated cube is Johnson solid J_66.

Examples

			34.33828804643758236859922626661459788652513451520...
		

Crossrefs

Cf. A386459 (volume).

Programs

  • Mathematica
    First[RealDigits[15 + Sqrt[200] + Sqrt[27], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J66", "SurfaceArea"], 10, 100]]

Formula

Equals 15 + 10*sqrt(2) + 3*sqrt(3) = 15 + 10*A002193 + A010482.
Equals the largest root of x^4 - 60*x^3 + 896*x^2 + 120*x - 21596.

A386465 Decimal expansion of the surface area of an augmented truncated dodecahedron with unit edges.

Original entry on oeis.org

1, 0, 2, 1, 8, 2, 0, 9, 2, 2, 2, 0, 2, 1, 3, 9, 1, 8, 5, 7, 7, 9, 8, 8, 5, 4, 2, 4, 5, 2, 8, 1, 5, 3, 3, 2, 0, 5, 2, 9, 8, 4, 2, 1, 5, 9, 5, 3, 6, 1, 4, 3, 6, 8, 9, 9, 8, 1, 3, 2, 6, 8, 5, 2, 1, 3, 9, 0, 7, 1, 9, 0, 7, 8, 1, 5, 0, 3, 9, 6, 6, 7, 2, 0, 5, 9, 0, 9, 3, 2
Offset: 3

Views

Author

Paolo Xausa, Jul 25 2025

Keywords

Comments

The augmented truncated dodecahedron is Johnson solid J_68.

Examples

			102.18209222021391857798854245281533205298421595361...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 25*Sqrt[3] + 110*Sqrt[#] + Sqrt[5*#])/4 & [5 + Sqrt[20]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J68", "SurfaceArea"], 10, 100]]

Formula

Equals (20 + 25*sqrt(3) + 110*sqrt(5 + 2*sqrt(5)) + sqrt(5*(5 + 2*sqrt(5))))/4 = (20 + 25*A002194 + 110*sqrt(5 + A010476) + sqrt(5*(5 + A010476)))/4.
Equals the largest root of 256*x^8 - 10240*x^7 - 3955200*x^6 + 122240000*x^5 + 16152924000*x^4 - 343551280000*x^3 - 11461251137500*x^2 + 131995515375000*x + 634637481578125.
Showing 1-3 of 3 results.