A386430 Odd numbers k such that there are no prime factors p of sigma(k) such that p does not divide A003961(k) and the valuation(k, p) is different from valuation(sigma(k), p), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.
1, 3, 7, 15, 21, 27, 31, 33, 57, 69, 87, 91, 93, 105, 127, 141, 177, 189, 195, 217, 231, 237, 273, 285, 301, 381, 399, 447, 465, 483, 495, 513, 567, 573, 597, 609, 627, 651, 717, 775, 819, 837, 861, 889, 903, 987, 1023, 1029, 1149, 1185, 1239, 1311, 1365, 1419, 1431, 1437, 1455, 1497, 1561, 1653, 1659, 1687, 1743
Offset: 1
Examples
a(386548) = 5919068925 = 3^4 * 5^2 * 7^2 * 11^2 * 17 * 29. sigma(5919068925) = 15355618740 = 2^2 * 3^4 * 5 * 7 * 11^2 * 19^2 * 31. The "don't care primes" is given by A003961(A007947(5919068925))) = 2947945 = 5*7*11*13*19*31, thus only odd prime factor that matters here is 3, which in case has the same exponent (4) in both n = 5919068925 and sigma(n). In a way, this number is very close to satisfying Euler's criterion for odd perfect numbers (A228058), except that it has two unitary prime factors of the form 4k+1, instead of just one, apart from the square factor. Both n/17 and n/29 are in A228058.
Links
Crossrefs
Programs
Formula
{k | k odd, A351555(k) = 0}.
Comments