cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A349169 Numbers k such that k * gcd(sigma(k), A003961(k)) is equal to the odd part of {sigma(k) * gcd(k, A003961(k))}, where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 15, 105, 3003, 3465, 13923, 45045, 264537, 459459, 745875, 1541475, 5221125, 8729721, 10790325, 14171625, 29288025, 34563375, 57034575, 71430975, 99201375, 109643625, 144729585, 205016175, 255835125, 295708875, 356080725, 399242025, 419159475, 449323875, 928602675, 939495375, 1083656925, 1941623775, 1962350685, 2083228875
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A348990(k) [= k/gcd(k, A003961(k))] is equal to A348992(k), which is the odd part of A349162(k), thus all terms must be odd, as A348990 preserves the parity of its argument.
Equally, numbers k for which gcd(A064987(k), A191002(k)) is equal to A000265(gcd(A064987(k), A341529(k))).
Also odd numbers k for which A348993(k) = A319627(k).
Odd terms of A336702 are given by the intersection of this sequence and A349174.
Conjectures:
(1) After 1, all terms are multiples of 3. (Why?)
(2) After 1, all terms are in A104210, in other words, for all n > 1, gcd(a(n), A003961(a(n))) > 1. Note that if we encountered a term k with gcd(k, A003961(k)) = 1, then we would have discovered an odd multiperfect number.
(3) Apart from 1, 15, 105, 3003, 13923, 264537, all other terms are abundant. [These apparently are also the only terms that are not Zumkeller, A083207. Note added Dec 05 2024]
(4) After 1, all terms are in A248150. (Cf. also A386430).
(5) After 1, all terms are in A348748.
(6) Apart from 1, there are no common terms with A349753.
Note: If any of the last four conjectures could be proved, it would refute the existence of odd perfect numbers at once. Note that it seems that gcd(sigma(k), A003961(k)) < k, for all k except these four: 1, 2, 20, 160.
Questions:
(1) For any term x here, can 2*x be in A349745? (Partial answer: at least x should be in A191218 and should not be a multiple of 3). Would this then imply that x is an odd perfect number? (Which could explain the points (1) and (4) in above, assuming the nonexistence of opn's).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1/GCD[#1, #3] == #2/(2^IntegerExponent[#2, 2]*GCD[#2, #3]) & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349169(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == A000265(s)*gcd(n,u)); }; \\ (Program simplified Nov 30 2021)

Formula

For all n >= 1, A007949(A000203(a(n))) = A007949(a(n)). [sigma preserves the 3-adic valuation of the terms of this sequence] - Antti Karttunen, Nov 29 2021

Extensions

Name changed and comment section rewritten by Antti Karttunen, Nov 29 2021

A351554 Numbers k such that there are no odd prime factors p of sigma(k) such that p does not divide A003961(k) and the valuation(k, p) is different from valuation(sigma(k), p), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 14, 15, 20, 21, 22, 24, 27, 28, 30, 31, 33, 34, 40, 42, 46, 54, 57, 60, 62, 66, 69, 70, 84, 87, 91, 93, 94, 102, 105, 106, 110, 114, 120, 127, 130, 138, 140, 141, 142, 154, 160, 168, 170, 174, 177, 182, 186, 189, 190, 195, 198, 210, 214, 216, 217, 220, 224, 230, 231, 237, 238, 254, 260, 264, 270, 273
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Comments

Numbers k for which A351555(k) = 0. This is a necessary condition for the terms of A349169 and of A349745, therefore they are subsequences of this sequence.
All six known 3-perfect numbers (A005820) are included in this sequence.
All 65 known 5-multiperfects (A046060) are included in this sequence.
Moreover, all multiperfect numbers (A007691) seem to be in this sequence.
From Antti Karttunen, Aug 27 2025: (Start)
Multiperfect number m is included in this sequence only if its abundancy sigma(m)/m has only such odd prime factors p that prevprime(p) [A151799] divides m for each p. E.g., all 65 known 5-multiperfects are multiples of 3, and all known terms of A005820 and A046061 are even.
This sequence contains natural numbers k such that the odd primes in the prime factorization of sigma(k) have the same valuation there as in k, except that the primes in A003961(k) [or equally in A003961(A007947(k))] stand for "don't care primes", that are "masked off" from the comparison.
(End)

Crossrefs

Positions of zeros in A351555.
Subsequences: A000396, A351553 (even terms), A386430 (odd terms), A351551, A349169, A349745, A387160 (terms of the form prime * m^2), also these, at least all the currently (Feb 2022) known terms: A005820, A007691, A046060.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351555(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); sum(k=1,#f~,if((f[k,1]%2) && 0!=(u%f[k,1]), (valuation(n,f[k,1])!=f[k,2]), 0)); };
    isA351554(n) = (0==A351555(n));
    
  • PARI
    isA351554(n) = { my(sh=A351546(n),f=factor(sh)); for(i=1,#f~, if((f[i,1]%2)&&valuation(n,f[i,1])!=f[i,2],return(0))); (1); }; \\ Uses also program given in A351546.

Extensions

Definition corrected by Antti Karttunen, Aug 22 2025

A351553 Even numbers k such that there are no odd prime factors p of sigma(k) such that p does not divide A003961(k) and the valuation(k, p) is different from valuation(sigma(k), p), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

2, 6, 10, 14, 20, 22, 24, 28, 30, 34, 40, 42, 46, 54, 60, 62, 66, 70, 84, 94, 102, 106, 110, 114, 120, 130, 138, 140, 142, 154, 160, 168, 170, 174, 182, 186, 190, 198, 210, 214, 216, 220, 224, 230, 238, 254, 260, 264, 270, 280, 282, 290, 308, 310, 318, 322, 330, 340, 354, 374, 378, 380, 382, 390, 408, 410, 420, 426
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Comments

Even numbers k for which A351555(k) = 0.

Crossrefs

Even terms in A351554, positions of zeros at even indices in A351555.
Cf. A351543 (complement among even numbers), A386430.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; A351555(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); sum(k=1,#f~,if((f[k,1]%2) && 0!=(u%f[k,1]), (valuation(n,f[k,1])!=f[k,2]), 0)); };
    isA351553(n) = (!(n%2) && 0==A351555(n));

Extensions

Definition corrected by Antti Karttunen, Aug 27 2025

A387160 Terms of the form prime * m^2 in A351554.

Original entry on oeis.org

2, 3, 7, 20, 27, 28, 31, 127, 496, 567, 775, 2268, 3100, 8128, 8191, 27783, 131071, 403172, 524287, 3628548, 17389708, 32656932, 33550336, 127926848, 1087307452, 1248461136, 1408566348, 2147483647, 7802882100, 8589869056, 9785767068, 10362074688, 31211528400, 88071903612
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2025

Keywords

Comments

Conjecture: This sequence has no common terms with A228058. See comments in A386430.

Crossrefs

Intersection of A229125 and A351554.
Subsequences: A000396\{6}, A000668.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351555(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); sum(k=1,#f~,if((f[k,1]%2) && 0!=(u%f[k,1]), (valuation(n,f[k,1])!=f[k,2]), 0)); };
    isA387160(n) = (isprime(core(n)) && (0==A351555(n)));

Formula

{k | A162642(k) = 1 and A351555(k) = 0}.

Extensions

Terms a(29)-a(34) from Giovanni Resta, Aug 25 2025
Showing 1-4 of 4 results.