cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386441 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 27.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 8, 8, 21, 7, 1, 1, 8, 1, 2, 16, 2, 1, 8, 1, 1, 9, 9, 3, 18, 18, 3, 9, 9, 1, 1, 10, 18, 12, 21, 9, 21, 12, 18, 10, 1, 1, 11, 1, 3, 6, 3, 3, 6, 3, 1, 11, 1, 1, 12, 12, 4, 9, 9, 6, 9, 9, 4, 12, 12, 1, 1, 13, 24, 16, 13, 18, 15, 15, 18, 13, 16, 24, 13, 1
Offset: 0

Views

Author

Chai Wah Wu, Jul 21 2025

Keywords

Examples

			Triangle begins:
               1;
             1,  1;
           1,  2,  1;
         1,  3,  3,  1;
       1,  4,  6,  4,  1;
     1,  5,  10,  10,  5,  1;
   1,  6,  15,  20,  15,  6,  1;
 1,  7,  21,  8,   8,  21,  7,  1;
  ...
		

Crossrefs

Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).

Programs

  • Mathematica
    T[i_,j_]:=Mod[Binomial[i,j],27]; Table[T[n,k],{n,0,13},{k,0,n}]//Flatten (* Stefano Spezia, Jul 22 2025 *)
  • Python
    from math import isqrt, comb
    from sympy import multiplicity
    from gmpy2 import digits
    def A386441(n):
        def g1(s,w,e):
            c, d = 1, 0
            if len(s) == 0: return c, d
            a, b = int(s,3), int(w,3)
            if a>=b:
                k = comb(a,b)%27
                j = multiplicity(3,k)
                d += j*e
                k = k//3**j
                c = c*pow(k,e,27)%27
            else:
                if int(s[0:1],3)4: return 0
        s = s.zfill(3)
        w = w.zfill(l:=len(s))
        c, d = g1(s[:3],w[:3],1)
        for i in range(1,l-2):
            c0, d0 = g1(s[i:i+3],w[i:i+3],1)
            c1, d1 = g1(s[i:i+2],w[i:i+2],-1)
            c = c*c0*c1%27
            d += d0+d1
        return c*3**d%27

Formula

T(i, j) = binomial(i, j) mod 27.