A386441 Triangle, read by rows, formed by reading Pascal's triangle (A007318) mod 27.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 8, 8, 21, 7, 1, 1, 8, 1, 2, 16, 2, 1, 8, 1, 1, 9, 9, 3, 18, 18, 3, 9, 9, 1, 1, 10, 18, 12, 21, 9, 21, 12, 18, 10, 1, 1, 11, 1, 3, 6, 3, 3, 6, 3, 1, 11, 1, 1, 12, 12, 4, 9, 9, 6, 9, 9, 4, 12, 12, 1, 1, 13, 24, 16, 13, 18, 15, 15, 18, 13, 16, 24, 13, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 6, 4, 1; 1, 5, 10, 10, 5, 1; 1, 6, 15, 20, 15, 6, 1; 1, 7, 21, 8, 8, 21, 7, 1; ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
- Kenneth S. Davis and William A. Webb, Lucas' Theorem for Prime Powers, Europ. J. Combinatorics, Vol. 11, No. 3 (1990), 229-233.
Crossrefs
Cf. A007318, A047999, A083093, A034931, A095140, A095141, A095142, A034930, A008975, A095143, A095144, A095145, A034932.
Sequences based on the triangles formed by reading Pascal's triangle mod m: A047999 (m = 2), A083093 (m = 3), A034931 (m = 4), A095140 (m = 5), A095141 (m = 6), A095142 (m = 7), A034930 (m = 8), A095143 (m = 9), A008975 (m = 10), A095144 (m = 11), A095145 (m = 12), A275198 (m = 14), A034932 (m = 16).
Programs
-
Mathematica
T[i_,j_]:=Mod[Binomial[i,j],27]; Table[T[n,k],{n,0,13},{k,0,n}]//Flatten (* Stefano Spezia, Jul 22 2025 *)
-
Python
from math import isqrt, comb from sympy import multiplicity from gmpy2 import digits def A386441(n): def g1(s,w,e): c, d = 1, 0 if len(s) == 0: return c, d a, b = int(s,3), int(w,3) if a>=b: k = comb(a,b)%27 j = multiplicity(3,k) d += j*e k = k//3**j c = c*pow(k,e,27)%27 else: if int(s[0:1],3)
4: return 0 s = s.zfill(3) w = w.zfill(l:=len(s)) c, d = g1(s[:3],w[:3],1) for i in range(1,l-2): c0, d0 = g1(s[i:i+3],w[i:i+3],1) c1, d1 = g1(s[i:i+2],w[i:i+2],-1) c = c*c0*c1%27 d += d0+d1 return c*3**d%27
Formula
T(i, j) = binomial(i, j) mod 27.