A386474 Number of sets of lists of [n] such that no list is longer than than the total number of lists.
1, 1, 1, 7, 25, 141, 1171, 9913, 85233, 907273, 11010691, 143824341, 1988010553, 29605763773, 475664908083, 8284952367721, 153508912353121, 2997209814190353, 61485486404453443, 1326994255131585373, 30144049509450774441, 718905298680190094341, 17940822818538396541843
Offset: 0
Examples
a(3) = 7 counts: {(1),(2),(3)}, {(1),(2,3)}, {(1),(3,2)}, {(1,2),(3)}, {(1,3),(2)}, {(2),(3,1)}, {(2,1),(3)}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Maple
b:= proc(n, m, l) option remember; `if`(m>n+l, 0, `if`(n=0, 1, add(b(n-j, max(m, j), l+1)*(n-1)!*j/(n-j)!, j=1..n))) end: a:= n-> b(n, 0$2): seq(a(n), n=0..22); # Alois P. Heinz, Jul 23 2025
-
Mathematica
With[{m = 22}, CoefficientList[1 + Series[Sum[((x - x^(i + 1))/(1 - x))^i/i!, {i, 1, m}], {x, 0, m}], x] * Range[0, m]!] (* Amiram Eldar, Jul 24 2025 *)
-
PARI
R_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(sum(i=0,N,((x-x^(i+1))/(1-x))^i/i!)))}
Formula
E.g.f.: Sum_{i>=0} ((x - x^(i+1))/(1 - x))^i / i!.
Comments