A386480 a(0) = 1; thereafter a(n) = n^2 - n + 2.
1, 2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552, 2654, 2758, 2864, 2972, 3082, 3194, 3308, 3424, 3542, 3662, 3784
Offset: 0
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 3.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, 5 circles can divide the plane into a(5) = 22 regions [The circles here are all the same size, although that was not a requirement. The same construction works for any n: take n equally-spaced centers around a circle. Then use inverse stereographic progression to get n great circles on a sphere.]
- Eric Weisstein's World of Mathematics, Plane Division by Circles.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
See A014206 for further information (including additional references).
Programs
-
Mathematica
A386480[n_] := If[n == 0, 1, n*(n - 1) + 2]; Array[A386480, 100, 0] (* Paolo Xausa, Aug 01 2025 *)
Formula
From Stefano Spezia, Aug 01 2025: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
G.f.: (1 - x + x^2 + x^3)/(1 - x)^3.
E.g.f.: exp(x)*(2 + x^2) - 1. (End)
Comments