cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014206 a(n) = n^2 + n + 2.

Original entry on oeis.org

2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, 158, 184, 212, 242, 274, 308, 344, 382, 422, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1894, 1982, 2072, 2164, 2258, 2354, 2452, 2552
Offset: 0

Views

Author

Keywords

Comments

Draw n + 1 circles in the plane; sequence gives maximal number of regions into which the plane is divided. Cf. A051890, A386480.
Number of binary (zero-one) bitonic sequences of length n + 1. - Johan Gade (jgade(AT)diku.dk), Oct 15 2003
Also the number of permutations of n + 1 which avoid the patterns 213, 312, 13452 and 34521. Example: the permutations of 4 which avoid 213, 312 (and implicitly 13452 and 34521) are 1234, 1243, 1342, 1432, 2341, 2431, 3421, 4321. - Mike Zabrocki, Jul 09 2007
If Y is a 2-subset of an n-set X then, for n >= 3, a(n-3) is equal to the number of (n-3)-subsets and (n-1)-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
With a different offset, competition number of the complete tripartite graph K_{n, n, n}. [Kim, Sano] - Jonathan Vos Post, May 14 2009. Cf. A160450, A160457.
A related sequence is A241119. - Avi Friedlich, Apr 28 2015
From Avi Friedlich, Apr 28 2015: (Start)
This sequence, which also represents the number of Hamiltonian paths in K_2 X P_n (A200182), may be represented by interlacing recursive polynomials in arithmetic progression (discriminant =-63). For example:
a(3*k-3) = 9*k^2 - 15*k + 8,
a(3*k-2) = 9*k^2 - 9*k + 4,
a(3*k-1) = 9*k^2 - 3*k + 2,
a(3*k) = 3*(k+1)^2 - 1. (End)
a(n+1) is the area of a triangle with vertices at (n+3, n+4), ((n-1)*n/2, n*(n+1)/2),((n+1)^2, (n+2)^2) with n >= -1. - J. M. Bergot, Feb 02 2018
For prime p and any integer k, k^a(p-1) == k^2 (mod p^2). - Jianing Song, Apr 20 2019
From Bernard Schott, Jan 01 2021: (Start)
For n >= 1, a(n-1) is the number of solutions x in the interval 0 <= x <= n of the equation x^2 - [x^2] = (x - [x])^2, where [x] = floor(x). For n = 3, the a(2) = 8 solutions in the interval [0, 3] are 0, 1, 3/2, 2, 9/4, 5/2, 11/4 and 3.
This is a variant of the 4th problem proposed during the 20th British Mathematical Olympiad in 1984 (see A002061). The interval [1, n] of the Olympiad problem becomes here [0, n], and only the new solution x = 0 is added. (End)
See A386480 for the almost identical sequence 1, 2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112, 134, ... which is the maximum number of regions that can be formed in the plane by drawing n circles, and the maximum number of regions that can be formed on the sphere by drawing n great circles. - N. J. A. Sloane, Aug 01 2025

Examples

			a(0) = 0^2 + 0 + 2 = 2.
a(1) = 1^2 + 1 + 2 = 4.
a(2) = 2^2 + 2 + 2 = 8.
a(6) = 4*5/5 + 5*6/5 + 6*7/5 + 7*8/5 + 8*9/5 = 44. - _Bruno Berselli_, Oct 20 2016
		

References

  • K. E. Batcher, Sorting Networks and their Applications. Proc. AFIPS Spring Joint Comput. Conf., Vol. 32, pp. 307-314 (1968). [for bitonic sequences]
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 3.
  • T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms. MIT Press / McGraw-Hill (1990) [for bitonic sequences]
  • Indiana School Mathematics Journal, vol. 14, no. 4, 1979, p. 4.
  • D. E. Knuth, The Art of Computer Programming, vol3: Sorting and Searching, Addison-Wesley (1973) [for bitonic sequences]
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 177.
  • Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
A row of A059250.
Cf. A000124, A051890, A002522, A241119, A033547 (partial sums).
Cf. A002061 (central polygonal numbers).
Column 4 of A347570.

Programs

Formula

G.f.: 2*(x^2 - x + 1)/(1 - x)^3.
n hyperspheres divide R^k into at most C(n-1, k) + Sum_{i = 0..k} C(n, i) regions.
a(n) = A002061(n+1) + 1 for n >= 0. - Rick L. Shepherd, May 30 2005
Equals binomial transform of [2, 2, 2, 0, 0, 0, ...]. - Gary W. Adamson, Jun 18 2008
a(n) = A003682(n+1), n > 0. - R. J. Mathar, Oct 28 2008
a(n) = a(n-1) + 2*n (with a(0) = 2). - Vincenzo Librandi, Nov 20 2010
a(0) = 2, a(1) = 4, a(2) = 8, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Harvey P. Dale, May 14 2011
a(n + 1) = n^2 + 3*n + 4. - Alonso del Arte, Apr 12 2015
a(n) = Sum_{i=n-2..n+2} i*(i + 1)/5. - Bruno Berselli, Oct 20 2016
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*sqrt(7)/2)/sqrt(7). - Amiram Eldar, Jan 09 2021
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(11)*Pi/2)*sech(sqrt(7)*Pi/2).
Product_{n>=0} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(sqrt(7)*Pi/2). (End)
a(n) = 2*A000124(n). - R. J. Mathar, Mar 14 2021
E.g.f.: exp(x)*(2 + 2*x + x^2). - Stefano Spezia, Apr 30 2022

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A051890 a(n) = 2*(n^2 - n + 1).

Original entry on oeis.org

2, 2, 6, 14, 26, 42, 62, 86, 114, 146, 182, 222, 266, 314, 366, 422, 482, 546, 614, 686, 762, 842, 926, 1014, 1106, 1202, 1302, 1406, 1514, 1626, 1742, 1862, 1986, 2114, 2246, 2382, 2522, 2666, 2814, 2966, 3122, 3282, 3446, 3614, 3786, 3962
Offset: 0

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Apr 30 2000

Keywords

Comments

Draw n ellipses in the plane (n > 0); sequence gives maximum number of regions into which the plane is divided (cf. A014206, A386480).
Least k such that Z(k,2) <= Z(n,3) where Z(m,s) = Sum_{i>=m} 1/i^s = zeta(s) - Sum_{i=1..m-1} 1/i^s. - Benoit Cloitre, Nov 29 2002
For n > 2, third diagonal of A154685. - Vincenzo Librandi, Aug 06 2010
a(k) is also the Moore lower bound A198300(k,6) on the order A054760(k,6) of a (k,6)-cage. Equality is achieved if and only if there exists a finite projective plane of order k - 1. A sufficient condition for this is that k - 1 be a prime power. - Jason Kimberley, Oct 17 2011 and Jan 01 2013
From Jess Tauber, May 20 2013: (Start)
For neutron shell filling in spherical atomic nuclei, this sequence shows numerical differences between filled spin-split suborbitals sharing all quantum numbers except the principal quantum number n, and here all n's must differ by 1. Only a small handful of exceptions exist.
This sequence consists of summed pairs of every other doubled triangular number. It also can be created by taking differences between nuclear magic numbers from the harmonic oscillator (HO)(doubled tetrahedral) set and the spin-orbit (SO) set (2,6,14,28,50,82,126,184,...), with either set being larger. So SO-HO: 2-0=2, 6-0=6, 14-0=14, 28-2=26, 50-8=42, 82-20=62, 126-40=86, 184-70=114, and HO-SO: 2-0=2, 8-2=6, 20-6=14, 40-14=26, 70-28=42, 112-50=62, 168-82=86, 240-126=114. From the perspective of idealized HO periodic structure, with suborbitals in order from largest to smallest spin, alternating by parity, the HO-SO set is spaced two period analogs PLUS one suborbital, while the SO-HO set is spaced two period analogs MINUS one suborbital. (End)
The known values of f(k,6) and F(k,6) in Brown (1967), Table 1, closely match this sequence. - N. J. A. Sloane, Jul 09 2015
Numbers k such that 2*k - 3 is a square. - Bruno Berselli, Nov 08 2017
Numbers written 222 in number base B, including binary with 'digit' 2: 222(2)=14, 222(3)=26, ... - Ron Knott, Nov 14 2017

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), this sequence (g=6), A188377 (g=7).

Programs

Formula

a(n) = 4*binomial(n, 2) + 2. - Francois Jooste (phukraut(AT)hotmail.com), Mar 05 2003
For n > 2, nearest integer to (Sum_{k>=n} 1/k^3)/(Sum_{k>=n} 1/k^5). - Benoit Cloitre, Jun 12 2003
a(n) = 2*A002061(n). - Jonathan Vos Post, Jun 19 2005
a(n) = 4*n + a(n-1) - 4 for n > 0, a(0)=2. - Vincenzo Librandi, Aug 06 2010
a(n) = 2*(n^2 - n +1) = 2*(n-1)^2 + 2(n-1) + 2 = 222 read in base n-1 (for n > 3). - Jason Kimberley, Oct 20 2011
G.f.: 2*(1 - 2*x + 3*x^2)/(1 - x)^3. - Colin Barker, Jan 10 2012
a(n) = A001844(n-1) + 1 = A046092(n-1) + 2. - Jaroslav Krizek, Dec 27 2013
E.g.f.: 2*(x^2 + 1)*exp(x). - G. C. Greubel, Jul 14 2017

A386485 a(0) = 1; thereafter a(n) = 5*n^2 - 5*n + 2.

Original entry on oeis.org

1, 2, 12, 32, 62, 102, 152, 212, 282, 362, 452, 552, 662, 782, 912, 1052, 1202, 1362, 1532, 1712, 1902, 2102, 2312, 2532, 2762, 3002, 3252, 3512, 3782, 4062, 4352, 4652, 4962, 5282, 5612, 5952, 6302, 6662, 7032, 7412, 7802, 8202, 8612, 9032, 9462, 9902, 10352, 10812, 11282, 11762, 12252, 12752, 13262, 13782, 14312
Offset: 0

Views

Author

N. J. A. Sloane, Aug 18 2025

Keywords

Comments

Maximum number of regions that can be formed in the plane by drawing n regular pentagons (of any size). Differs from A062786 and A124080 by a small constant shift, but is included here because of its geometrical applications.

Crossrefs

Programs

  • Mathematica
    A386485[n_] := If[n == 0, 1, 5*n*(n - 1) + 2]; Array[A386485, 60, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 2, 12, 32}, 60] (* Paolo Xausa, Aug 18 2025 *)

Formula

G.f.: -(x^3+9*x^2-x+1)/(x-1)^3.
Showing 1-3 of 3 results.