A386577 Irregular triangle read by rows where T(n,k) is the number of permutations of the multiset of prime factors of n with k adjacent equal terms.
1, 1, 0, 1, 1, 2, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 1, 2, 0, 1, 2, 0, 2, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 0, 2, 2, 0, 0, 1, 2, 0, 0, 0, 1, 1, 2, 0, 1, 6, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 2, 0, 2, 0, 2, 2, 2, 0, 1, 2, 0, 2, 0, 0, 2, 2, 0, 1
Offset: 1
Examples
The prime indices of 12 are {1,1,2}, and we have: - 1 permutation (1,2,1) with 0 adjacent equal parts - 2 permutations (1,1,2), (2,1,1) with 1 adjacent equal part - 0 permutations with 2 adjacent equal parts so row 12 is (1,2,0). Row 48 counts the following permutations: . . (1,1,1,2,1) (1,1,1,1,2) . (1,1,2,1,1) (2,1,1,1,1) (1,2,1,1,1) Row 144 counts the following permutations: . (1,1,2,1,2,1) (1,1,1,2,1,2) (1,1,1,2,2,1) (1,1,1,1,2,2) . (1,2,1,1,2,1) (1,1,2,1,1,2) (1,1,2,2,1,1) (2,2,1,1,1,1) (1,2,1,2,1,1) (1,2,1,1,1,2) (1,2,2,1,1,1) (2,1,1,1,2,1) (2,1,1,1,1,2) (2,1,1,2,1,1) (2,1,2,1,1,1) Triangle begins: 1: 2: 1 3: 1 4: 0 1 6: 1 6: 2 0 7: 1 8: 0 0 1 9: 0 1 10: 2 0 11: 1 12: 1 2 0 13: 1 14: 2 0 15: 2 0 16: 0 0 0 1 17: 1 18: 1 2 0 19: 1 20: 1 2 0 21: 2 0 22: 2 0 23: 1 24: 0 2 2 0
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],Function[q,Length[Select[Range[Length[q]-1],q[[#]]==q[[#+1]]&]]==k]]],{n,30},{k,0,PrimeOmega[n]-1}]
Comments