A386583 Triangle read by rows where T(n,k) is the number of length k integer partitions of n having a permutation without any adjacent equal parts (separable).
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 1, 3, 4, 1, 1, 0, 0, 0, 1, 3, 5, 3, 2, 0, 0, 0, 0, 1, 4, 6, 4, 3, 1, 0, 0, 0, 0, 1, 4, 8, 6, 5, 1, 1, 0, 0, 0, 0, 1, 5, 10, 8, 8, 3, 2, 0, 0, 0, 0, 0, 1, 5, 11, 12, 11, 5, 3, 1, 0, 0, 0, 0
Offset: 0
Examples
Row n = 9 counts the following partitions: (9) (5,4) (4,3,2) (3,3,2,1) (3,2,2,1,1) (2,2,2,1,1,1) (6,3) (4,4,1) (4,2,2,1) (3,3,1,1,1) (7,2) (5,2,2) (4,3,1,1) (4,2,1,1,1) (8,1) (5,3,1) (5,2,1,1) (6,2,1) (7,1,1) Triangle begins: 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 2 2 0 0 0 1 2 2 1 0 0 0 1 3 4 1 1 0 0 0 1 3 5 3 2 0 0 0 0 1 4 6 4 3 1 0 0 0 0 1 4 8 6 5 1 1 0 0 0 0 1 5 10 8 8 3 2 0 0 0 0 0 1 5 11 12 11 5 3 1 0 0 0 0 0 1 6 14 14 15 8 6 1 1 0 0 0 0 0 1 6 16 19 20 11 9 3 2 0 0 0 0 0 0 1 7 18 23 27 17 14 5 3 1 0 0 0 0 0 0 1 7 21 29 34 23 20 9 6 1 1 0 0 0 0 0 0 1 8 24 34 43 32 28 13 10 3 2 0 0 0 0 0 0 0 1 8 26 42 53 42 38 20 15 5 3 1 0 0 0 0 0 0 0 1 9 30 48 66 55 52 28 23 9 6 1 1 0 0 0 0 0 0 0 1 9 33 58 80 70 68 41 33 14 10 3 2 0 0 0 0 0 0 0 ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Separable case of A008284.
Programs
-
Mathematica
sepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]!={}; Table[Length[Select[IntegerPartitions[n,{k}],sepQ]],{n,0,15},{k,0,n}]
Comments